School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Assessing fire impacts on the carbon stability of fire-tolerant forests
    Bennett, LT ; Bruce, MJ ; Machunter, J ; Kohout, M ; Krishnaraj, SJ ; Aponte, C (WILEY, 2017-12)
    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes.
  • Item
    Thumbnail Image
    Nutrient uptake and use efficiency in co-occurring plants along a disturbance and nutrient availability gradient in the boreal forests of the southwest Yukon, Canada
    Nitschke, CR ; Waeber, PO ; Klaassen, JW ; Dordel, J ; Innes, JL ; Aponte, C ; Gilliam, F (Wiley, 2017-01-01)
    Aim In boreal forest ecosystems plant productivity is typically constrained by mineral nutrient availability. In some boreal regions changes in nutrient availability have led to limited changes in productivity but large changes in plant composition. To determine the impact that a change in nutrient availability has on the plant communities it is important to understand how species use nutrients. Here we explore how plant species and functional types in a cold‐dry boreal forest community use available nutrients by quantifying their respective nutrient utilization and response efficiency. Location Boreal forests in the southwest corner of the Yukon Territory, Canada. Methods We collected soil samples and total plant biomass from 29 plots from nine locations subjected to fire, harvesting or bark beetle disturbances. Nutrient analysis of all vegetation and soil samples were conducted to determine the concentration of macro‐ and micronutrients from both plant biomass and soils collected. Nutrient pools between stands with different disturbance histories are compared. Nutrient uptake, use and response efficiencies were then calculated and nutrient response profiles were developed for each species/functional type. Results We found few differences between nutrient pools in plots with different disturbance histories. A clear separation of species and functional groups in elemental hyperspace suggesting divergent nutrient use in co‐occurring species was identified. The use efficiency analysis highlighted that the species with the highest uptake efficiency have lowest use efficiency and vice versa. Species showed either a monotonic or constant relationship between nutrient response efficiency and N, P, K, reflecting a lack of relationship between plant productivity and resource availability or a linear increase in productivity with increasing nutrient availability, respectively. Conclusions Our findings indicate that species are maximizing nutrient use along different parts of the resource gradient, which has implications for understanding how species respond to changes in nutrient availability. Our findings also show that nutrient use by some species may be governed more by uptake efficiency than use efficiency, allowing them to respond to increases in resource availability by increasing uptake rather than use.
  • Item
  • Item
  • Item
    Thumbnail Image
    The Response of Silver Beet to Microwave Generated Biochar
    Brodie, G ; Kaudal, B ; Aponte, C ; poisant, M (International Microwave Po, 2017-06-23)