School of Ecosystem and Forest Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 44
  • Item
    Thumbnail Image
    Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network
    Beringer, J ; Moore, CE ; Cleverly, J ; Campbell, D ; Cleugh, H ; De Kauwe, MG ; Kirschbaum, MUF ; Griebel, A ; Grover, S ; Huete, A ; Hutley, LB ; Laubach, J ; Van Niel, T ; Arndt, SK ; Bennett, AC ; Cernusak, LA ; Eamus, D ; Ewenz, CM ; Goodrich, JP ; Jiang, M ; Hinko-Najera, N ; Isaac, P ; Hobeichi, S ; Knauer, J ; Koerber, GR ; Liddell, M ; Ma, X ; Macfarlane, C ; McHugh, ID ; Medlyn, BE ; Meyer, WS ; Norton, AJ ; Owens, J ; Pitman, A ; Pendall, E ; Prober, SM ; Ray, RL ; Restrepo-Coupe, N ; Rifai, SW ; Rowlings, D ; Schipper, L ; Silberstein, RP ; Teckentrup, L ; Thompson, SE ; Ukkola, AM ; Wall, A ; Wang, Y-P ; Wardlaw, TJ ; Woodgate, W (WILEY, 2022-03-22)
    In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
  • Item
    Thumbnail Image
    Riparian trees resprout regardless of timing and severity of disturbance by coppicing
    Fischer, S ; Greet, J ; Walsh, CJ ; Catford, JA ; Arndt, SK (Elsevier BV, 2022-03-01)
    Human modification of waterways has reduced flooding in many river systems, leading to the decline of riparian forests, which rely on flooding for their regeneration. Coppicing may help to promote the persistence of riparian trees by triggering resprouting and vegetative regeneration. The vigour of resprouting plants can vary with timing and height of coppicing and may depend on stored non-structural carbohydrate reserves like starch, the availability of which can vary seasonally. However, starch storage dynamics and the resprouting potential of broad-leafed evergreen riparian trees is not well understood. We coppiced two riparian tree species, Eucalyptus camphora and Melaleuca squarrosa, at two different times (autumn, spring) and at two different heights (0 cm and 90 cm). Over 52 weeks, we regularly quantified shoot growth and changes in the starch storage pool size, compared to uncoppiced control trees, in different tree organs (root and stem) and estimated the final shoot volume. The final shoot volume did not differ significantly between coppice treatments. Trees coppiced in autumn had a greater reliance on stored starch while they remained leafless (without shoots) over winter. Trees cut at 90 cm had more starch reserves due to remaining stems but also had higher biomass maintenance costs. Starch storage varied seasonally only in E. camphora, with starch concentrations in control trees increasing over winter and decreasing over summer. Although coppice timing and height affected use of stored starch, resprouting in our study species was not limited by starch availability - both species regenerated vegetatively to recover from physical disturbance. Thus, coppicing may be an efficient means to promote rejuvenation and persistence of tree species where site and tree condition are degraded and no longer support recruitment.
  • Item
    Thumbnail Image
    AusTraits, a curated plant trait database for the Australian flora
    Falster, D ; Gallagher, R ; Wenk, EH ; Wright, IJ ; Indiarto, D ; Andrew, SC ; Baxter, C ; Lawson, J ; Allen, S ; Fuchs, A ; Monro, A ; Kar, F ; Adams, MA ; Ahrens, CW ; Alfonzetti, M ; Angevin, T ; Apgaua, DMG ; Arndt, S ; Atkin, OK ; Atkinson, J ; Auld, T ; Baker, A ; von Balthazar, M ; Bean, A ; Blackman, CJ ; Bloomfeld, K ; Bowman, DMJS ; Bragg, J ; Brodribb, TJ ; Buckton, G ; Burrows, G ; Caldwell, E ; Camac, J ; Carpenter, R ; Catford, J ; Cawthray, GR ; Cernusak, LA ; Chandler, G ; Chapman, AR ; Cheal, D ; Cheesman, AW ; Chen, S-C ; Choat, B ; Clinton, B ; Clode, PL ; Coleman, H ; Cornwell, WK ; Cosgrove, M ; Crisp, M ; Cross, E ; Crous, KY ; Cunningham, S ; Curran, T ; Curtis, E ; Daws, M ; DeGabriel, JL ; Denton, MD ; Dong, N ; Du, P ; Duan, H ; Duncan, DH ; Duncan, RP ; Duretto, M ; Dwyer, JM ; Edwards, C ; Esperon-Rodriguez, M ; Evans, JR ; Everingham, SE ; Farrell, C ; Firn, J ; Fonseca, CR ; French, BJ ; Frood, D ; Funk, JL ; Geange, SR ; Ghannoum, O ; Gleason, SM ; Gosper, CR ; Gray, E ; Groom, PK ; Grootemaat, S ; Gross, C ; Guerin, G ; Guja, L ; Hahs, AK ; Harrison, MT ; Hayes, PE ; Henery, M ; Hochuli, D ; Howell, J ; Huang, G ; Hughes, L ; Huisman, J ; Ilic, J ; Jagdish, A ; Jin, D ; Jordan, G ; Jurado, E ; Kanowski, J ; Kasel, S ; Kellermann, J ; Kenny, B ; Kohout, M ; Kooyman, RM ; Kotowska, MM ; Lai, HR ; Laliberte, E ; Lambers, H ; Lamont, BB ; Lanfear, R ; van Langevelde, F ; Laughlin, DC ; Laugier-kitchener, B-A ; Laurance, S ; Lehmann, CER ; Leigh, A ; Leishman, MR ; Lenz, T ; Lepschi, B ; Lewis, JD ; Lim, F ; Liu, U ; Lord, J ; Lusk, CH ; Macinnis-Ng, C ; McPherson, H ; Magallon, S ; Manea, A ; Lopez-Martinez, A ; Mayfeld, M ; McCarthy, JK ; Meers, T ; van der Merwe, M ; Metcalfe, DJ ; Milberg, P ; Mokany, K ; Moles, AT ; Moore, BD ; Moore, N ; Morgan, JW ; Morris, W ; Muir, A ; Munroe, S ; Nicholson, A ; Nicolle, D ; Nicotra, AB ; Niinemets, U ; North, T ; O'Reilly-Nugent, A ; O'Sullivan, OS ; Oberle, B ; Onoda, Y ; Ooi, MKJ ; Osborne, CP ; Paczkowska, G ; Pekin, B ; Pereira, CG ; Pickering, C ; Pickup, M ; Pollock, LJ ; Poot, P ; Powell, JR ; Power, S ; Prentice, IC ; Prior, L ; Prober, SM ; Read, J ; Reynolds, V ; Richards, AE ; Richardson, B ; Roderick, ML ; Rosell, JA ; Rossetto, M ; Rye, B ; Rymer, PD ; Sams, M ; Sanson, G ; Sauquet, H ; Schmidt, S ; Schoenenberger, J ; Schulze, E-D ; Sendall, K ; Sinclair, S ; Smith, B ; Smith, R ; Soper, F ; Sparrow, B ; Standish, RJ ; Staples, TL ; Stephens, R ; Szota, C ; Taseski, G ; Tasker, E ; Thomas, F ; Tissue, DT ; Tjoelker, MG ; Tng, DYP ; de Tombeur, F ; Tomlinson, K ; Turner, NC ; Veneklaas, EJ ; Venn, S ; Vesk, P ; Vlasveld, C ; Vorontsova, MS ; Warren, CA ; Warwick, N ; Weerasinghe, LK ; Wells, J ; Westoby, M ; White, M ; Williams, NSG ; Wills, J ; Wilson, PG ; Yates, C ; Zanne, AE ; Zemunik, G ; Zieminska, K (NATURE PORTFOLIO, 2021-09-30)
    We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  • Item
    Thumbnail Image
    Concurrent Measurements of Soil and Ecosystem Respiration in a Mature Eucalypt Woodland: Advantages, Lessons, and Questions
    Renchon, AA ; Drake, JE ; Macdonald, CA ; Sihi, D ; Hinko-Najera, N ; Tjoelker, MG ; Arndt, SK ; Noh, NJ ; Davidson, E ; Pendall, E (AMER GEOPHYSICAL UNION, 2021-03-01)
  • Item
    Thumbnail Image
    Does the turgor loss point characterize drought response in dryland plants?
    Farrell, C ; Szota, C ; Arndt, SK (WILEY, 2017-08-01)
    The water potential at turgor loss point (Ψtlp ) has been suggested as a key functional trait for determining plant drought tolerance, because of its close relationship with stomatal closure. Ψtlp may indicate drought tolerance as plants, which maintain gas exchange at lower midday water potentials as soil water availability declines also have lower Ψtlp . We evaluated 17 species from seasonally dry habitats, representing a range of life-forms, under well-watered and drought conditions, to determine how Ψtlp relates to stomatal sensitivity (pre-dawn water potential at stomatal closure: Ψgs0 ) and drought strategy (degree of isohydry or anisohydry; ΔΨMD between well-watered conditions and stomatal closure). Although Ψgs0 was related to Ψtlp , Ψgs0 was better related to drought strategy (ΔΨMD ). Drought avoiders (isohydric) closed stomata at water potentials higher than their Ψtlp ; whereas, drought tolerant (anisohydric) species maintained stomatal conductance at lower water potentials than their Ψtlp and were more dehydration tolerant. There was no significant relationship between Ψtlp and ΔΨMD . While Ψtlp has been related to biome water availability, we found that Ψtlp did not relate strongly to stomatal closure or drought strategy, for either drought avoiders or tolerators. We therefore suggest caution in using Ψtlp to predict vulnerability to drought.
  • Item
    Thumbnail Image
    Stable isotopes in leaf water of terrestrial plants
    Cernusak, LA ; Barbour, MM ; Arndt, SK ; Cheesman, AW ; English, NB ; Feild, TS ; Helliker, BR ; Holloway-Phillips, MM ; Holtum, JAM ; Kahmen, A ; McInerney, FA ; Munksgaard, NC ; Simonin, KA ; Song, X ; Stuart-Williams, H ; West, JB ; Farquhar, GD (WILEY, 2016-05-01)
    Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ(18) O and δ(2) H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water.
  • Item
    Thumbnail Image
    An ecoclimatic framework for evaluating the resilience of vegetation to water deficit
    Mitchell, PJ ; O'Grady, AP ; Pinkard, EA ; Brodribb, TJ ; Arndt, SK ; Blackman, CJ ; Duursma, RA ; Fensham, RJ ; Hilbert, DW ; Nitschke, CR ; Norris, J ; Roxburgh, SH ; Ruthrof, KX ; Tissue, DT (WILEY, 2016-05-01)
    The surge in global efforts to understand the causes and consequences of drought on forest ecosystems has tended to focus on specific impacts such as mortality. We propose an ecoclimatic framework that takes a broader view of the ecological relevance of water deficits, linking elements of exposure and resilience to cumulative impacts on a range of ecosystem processes. This ecoclimatic framework is underpinned by two hypotheses: (i) exposure to water deficit can be represented probabilistically and used to estimate exposure thresholds across different vegetation types or ecosystems; and (ii) the cumulative impact of a series of water deficit events is defined by attributes governing the resistance and recovery of the affected processes. We present case studies comprising Pinus edulis and Eucalyptus globulus, tree species with contrasting ecological strategies, which demonstrate how links between exposure and resilience can be examined within our proposed framework. These examples reveal how climatic thresholds can be defined along a continuum of vegetation functional responses to water deficit regimes. The strength of this framework lies in identifying climatic thresholds on vegetation function in the absence of more complete mechanistic understanding, thereby guiding the formulation, application and benchmarking of more detailed modelling.
  • Item
    Thumbnail Image
    Life span and structure of ephemeral root modules of different functional groups from a desert system
    Liu, B ; He, J ; Zeng, F ; Lei, J ; Arndt, SK (WILEY, 2016-07-01)
    The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design.
  • Item
    Thumbnail Image
    Trading Water for Carbon: Maintaining Photosynthesis at the Cost of Increased Water Loss During High Temperatures in a Temperate Forest
    Griebel, A ; Bennett, LT ; Metzen, D ; Pendall, E ; Lane, PNJ ; Arndt, SK (American Geophysical Union, 2020-01-01)
    Carbon and water fluxes are often assumed to be coupled as a result of stomatal regulation during dry conditions. However, recent observations evidenced increased transpiration rates during isolated heatwaves across a range of eucalypt species under experimental and natural conditions, with inconsistent effects on photosynthesis (ranging from increases to stark declines). To improve the empirical basis for understanding carbon and water fluxes in forests under hotter and drier climates, we measured the water use of dominant trees and ecosystem‐scale carbon and water exchange in a temperate eucalypt forest over three summer seasons. The forest maintained photosynthesis within 16% of baseline rates during hot and dry conditions, despite ~70% reductions in canopy conductance during a 5‐day heatwave. While carbon and water fluxes both decreased by 16% on exceptionally dry days, gross primary productivity only decreased by 5% during the hottest days and increased by 2% during the heatwave. However, evapotranspiration increased by 43% (hottest days) and 74% (heatwave), leading to ~40% variation in traditional water use efficiency (water use efficiency = gross primary productivity/evapotranspiration) across conditions and approximately two‐fold differences between traditional and underlying or intrinsic water use efficiency on the same days. Furthermore, the forest became a net source of carbon following a 137% increase in ecosystem respiration during the heatwave, highlighting that the potential for temperate eucalypt forests to act as net carbon sinks under hotter and drier climates will depend not only on the responses of photosynthesis to higher temperatures and changes in water availability, but also on the concomitant responses of ecosystem respiration.
  • Item
    Thumbnail Image
    Relationships between plant drought response, traits, and climate of origin for green roof plant selection
    Du, P ; Arndt, SK ; Farrell, C (WILEY, 2018-10-01)
    The ideal species for green or vegetated roofs should have high water use after rainfall to maximize stormwater retention but also survive periods with low water availability in dry substrates. Shrubs have great potential for green roofs because they have higher rates of water use, and many species are also drought tolerant. However, not all shrub species will be suitable and there may be a trade-off between water use and drought tolerance. We conducted a glasshouse experiment to determine the possible trade-offs between shrub water use for stormwater management and their response to drought conditions. We selected 20 shrubs from a wide range of climates of origin, represented by heat moisture index (HMI) and mean annual precipitation (MAP). Under well-watered (WW) and water-deficit (WD) conditions, we assessed morphological responses to water availability; evapotranspiration rate (ET) and midday water potential (ΨMD ) were used to evaluate species water use and drought response. In response to WD, all 20 shrubs adjusted their morphology and physiology. However, there were no species that simultaneously achieved high rates of water use (high ET) under WW and high drought tolerance (low ΨMD ) under WD conditions. Although some species which had high water use under WW conditions could avoid drought stress (high ΨMD ). Water use was strongly related to plant biomass, total leaf area, and leaf traits (specific leaf area [SLA] and leaf area ratio [LAR]). Conversely, drought response (ΨMD ) was not related to morphological traits. Species' climate of origin was not related to drought response or water use. Drought-avoiding shrubs (high ΨMD ) could optimize rainfall reduction on green roofs. Water use was related to biomass, leaf area, and leaf traits; thus, these traits could be used to assist the selection of shrubs for stormwater mitigation on green roofs. The natural distribution of species was not related to their water use or drought response, which suggests that shrubs from less arid climates may be suitable for use on green roofs. Selecting species based on traits and not climate of origin could both improve green roof performance and biodiversity outcomes by expanding the current plant palette.