School of Ecosystem and Forest Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Tree water-use strategies to improve stormwater retention performance of biofiltration systems
    Szota, C ; McCarthy, MJ ; Sanders, GJ ; Farrell, C ; Fletcher, TD ; Arndt, SK ; Livesley, SJ (PERGAMON-ELSEVIER SCIENCE LTD, 2018-11-01)
    Biofiltration systems are highly valued in urban landscapes as they remove pollutants from stormwater runoff whilst contributing to a reduction in runoff volumes. Integrating trees in biofilters may improve their runoff retention performance, as trees have greater transpiration than commonly used sedge or herb species. High transpiration rates will rapidly deplete retained water, creating storage capacity prior to the next runoff event. However, a tree with high transpiration rates in a biofilter system will likely be frequently exposed to drought stress. Selecting appropriate tree species therefore requires an understanding of how different trees use water and how they respond to substrate drying. We selected 20 tree species and quantified evapotranspiration (ET) and drought stress (leaf water potential; Ψ) in relation to substrate water content. To compare species, we developed metrics which describe: (i) maximum rates of ET under well-watered conditions, (ii) the sensitivity of ET and (iii) the response of Ψ to declining substrate water content. Using these three metrics, we classified species into three groups: risky, balanced or conservative. Risky and balanced species showed high maximum ET, whereas conservative species always had low ET. As substrates dried, the balanced species down-regulated ET to delay the onset of drought stress; whereas risky species did not. Therefore, balanced species with high ET are more likely to improve the retention performance of biofiltration systems without introducing significant drought risk. This classification of tree water use strategies can be easily integrated into water balance models and improve tree species selection for biofiltration systems.
  • Item
    Thumbnail Image
    AusTraits, a curated plant trait database for the Australian flora
    Falster, D ; Gallagher, R ; Wenk, EH ; Wright, IJ ; Indiarto, D ; Andrew, SC ; Baxter, C ; Lawson, J ; Allen, S ; Fuchs, A ; Monro, A ; Kar, F ; Adams, MA ; Ahrens, CW ; Alfonzetti, M ; Angevin, T ; Apgaua, DMG ; Arndt, S ; Atkin, OK ; Atkinson, J ; Auld, T ; Baker, A ; von Balthazar, M ; Bean, A ; Blackman, CJ ; Bloomfeld, K ; Bowman, DMJS ; Bragg, J ; Brodribb, TJ ; Buckton, G ; Burrows, G ; Caldwell, E ; Camac, J ; Carpenter, R ; Catford, J ; Cawthray, GR ; Cernusak, LA ; Chandler, G ; Chapman, AR ; Cheal, D ; Cheesman, AW ; Chen, S-C ; Choat, B ; Clinton, B ; Clode, PL ; Coleman, H ; Cornwell, WK ; Cosgrove, M ; Crisp, M ; Cross, E ; Crous, KY ; Cunningham, S ; Curran, T ; Curtis, E ; Daws, M ; DeGabriel, JL ; Denton, MD ; Dong, N ; Du, P ; Duan, H ; Duncan, DH ; Duncan, RP ; Duretto, M ; Dwyer, JM ; Edwards, C ; Esperon-Rodriguez, M ; Evans, JR ; Everingham, SE ; Farrell, C ; Firn, J ; Fonseca, CR ; French, BJ ; Frood, D ; Funk, JL ; Geange, SR ; Ghannoum, O ; Gleason, SM ; Gosper, CR ; Gray, E ; Groom, PK ; Grootemaat, S ; Gross, C ; Guerin, G ; Guja, L ; Hahs, AK ; Harrison, MT ; Hayes, PE ; Henery, M ; Hochuli, D ; Howell, J ; Huang, G ; Hughes, L ; Huisman, J ; Ilic, J ; Jagdish, A ; Jin, D ; Jordan, G ; Jurado, E ; Kanowski, J ; Kasel, S ; Kellermann, J ; Kenny, B ; Kohout, M ; Kooyman, RM ; Kotowska, MM ; Lai, HR ; Laliberte, E ; Lambers, H ; Lamont, BB ; Lanfear, R ; van Langevelde, F ; Laughlin, DC ; Laugier-kitchener, B-A ; Laurance, S ; Lehmann, CER ; Leigh, A ; Leishman, MR ; Lenz, T ; Lepschi, B ; Lewis, JD ; Lim, F ; Liu, U ; Lord, J ; Lusk, CH ; Macinnis-Ng, C ; McPherson, H ; Magallon, S ; Manea, A ; Lopez-Martinez, A ; Mayfeld, M ; McCarthy, JK ; Meers, T ; van der Merwe, M ; Metcalfe, DJ ; Milberg, P ; Mokany, K ; Moles, AT ; Moore, BD ; Moore, N ; Morgan, JW ; Morris, W ; Muir, A ; Munroe, S ; Nicholson, A ; Nicolle, D ; Nicotra, AB ; Niinemets, U ; North, T ; O'Reilly-Nugent, A ; O'Sullivan, OS ; Oberle, B ; Onoda, Y ; Ooi, MKJ ; Osborne, CP ; Paczkowska, G ; Pekin, B ; Pereira, CG ; Pickering, C ; Pickup, M ; Pollock, LJ ; Poot, P ; Powell, JR ; Power, S ; Prentice, IC ; Prior, L ; Prober, SM ; Read, J ; Reynolds, V ; Richards, AE ; Richardson, B ; Roderick, ML ; Rosell, JA ; Rossetto, M ; Rye, B ; Rymer, PD ; Sams, M ; Sanson, G ; Sauquet, H ; Schmidt, S ; Schoenenberger, J ; Schulze, E-D ; Sendall, K ; Sinclair, S ; Smith, B ; Smith, R ; Soper, F ; Sparrow, B ; Standish, RJ ; Staples, TL ; Stephens, R ; Szota, C ; Taseski, G ; Tasker, E ; Thomas, F ; Tissue, DT ; Tjoelker, MG ; Tng, DYP ; de Tombeur, F ; Tomlinson, K ; Turner, NC ; Veneklaas, EJ ; Venn, S ; Vesk, P ; Vlasveld, C ; Vorontsova, MS ; Warren, CA ; Warwick, N ; Weerasinghe, LK ; Wells, J ; Westoby, M ; White, M ; Williams, NSG ; Wills, J ; Wilson, PG ; Yates, C ; Zanne, AE ; Zemunik, G ; Zieminska, K (NATURE PORTFOLIO, 2021-09-30)
    We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  • Item
    Thumbnail Image
    Does the turgor loss point characterize drought response in dryland plants?
    Farrell, C ; Szota, C ; Arndt, SK (WILEY, 2017-08-01)
    The water potential at turgor loss point (Ψtlp ) has been suggested as a key functional trait for determining plant drought tolerance, because of its close relationship with stomatal closure. Ψtlp may indicate drought tolerance as plants, which maintain gas exchange at lower midday water potentials as soil water availability declines also have lower Ψtlp . We evaluated 17 species from seasonally dry habitats, representing a range of life-forms, under well-watered and drought conditions, to determine how Ψtlp relates to stomatal sensitivity (pre-dawn water potential at stomatal closure: Ψgs0 ) and drought strategy (degree of isohydry or anisohydry; ΔΨMD between well-watered conditions and stomatal closure). Although Ψgs0 was related to Ψtlp , Ψgs0 was better related to drought strategy (ΔΨMD ). Drought avoiders (isohydric) closed stomata at water potentials higher than their Ψtlp ; whereas, drought tolerant (anisohydric) species maintained stomatal conductance at lower water potentials than their Ψtlp and were more dehydration tolerant. There was no significant relationship between Ψtlp and ΔΨMD . While Ψtlp has been related to biome water availability, we found that Ψtlp did not relate strongly to stomatal closure or drought strategy, for either drought avoiders or tolerators. We therefore suggest caution in using Ψtlp to predict vulnerability to drought.
  • Item
    Thumbnail Image
    High water users can be drought tolerant: using physiological traits for green roof plant selection
    Farrell, C ; Szota, C ; Williams, NSG ; Arndt, SK (SPRINGER, 2013-11-01)
  • Item
    Thumbnail Image
    Urban Plantings: 'Living Laboratories' for Climate Change Response
    Farrell, C ; Szota, C ; Arndt, SK (ELSEVIER SCIENCE LONDON, 2015-10-01)
    Urban plantings are not only valuable resources for understanding 'urban plant physiology' but are 'living laboratories' for understanding plant response to climate change. Therefore, we encourage researchers who currently work in natural ecosystems to consider how urban plantings could enhance their research into plant physiological responses to a changing climate.