School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
  • Item
    Thumbnail Image
    Conserving herbivorous and predatory insects in urban green spaces
    Mata, L ; Threlfall, CG ; Williams, NSG ; Hahs, AK ; Malipatil, M ; Stork, NE ; Livesley, SJ (NATURE PORTFOLIO, 2017-01-19)
    Insects are key components of urban ecological networks and are greatly impacted by anthropogenic activities. Yet, few studies have examined how insect functional groups respond to changes to urban vegetation associated with different management actions. We investigated the response of herbivorous and predatory heteropteran bugs to differences in vegetation structure and diversity in golf courses, gardens and parks. We assessed how the species richness of these groups varied amongst green space types, and the effect of vegetation volume and plant diversity on trophic- and species-specific occupancy. We found that golf courses sustain higher species richness of herbivores and predators than parks and gardens. At the trophic- and species-specific levels, herbivores and predators show strong positive responses to vegetation volume. The effect of plant diversity, however, is distinctly species-specific, with species showing both positive and negative responses. Our findings further suggest that high occupancy of bugs is obtained in green spaces with specific combinations of vegetation structure and diversity. The challenge for managers is to boost green space conservation value through actions promoting synergistic combinations of vegetation structure and diversity. Tackling this conservation challenge could provide enormous benefits for other elements of urban ecological networks and people that live in cities.
  • Item
    No Preview Available
    Trees provide energy saving benefits to adjacent buildings for a small water cost
    Livesley, SJ ; Aye, L ; Hes, D ; DAWKINS, A ; LHENDUP, T ; CAFFIN, M ; Williams, NS (Australian Sustainable Cities and Regions Network, 2011)
  • Item
    Thumbnail Image
    The conservation value of urban green space habitats for Australian native bee communities
    Threlfall, CG ; Walker, K ; Williams, NSG ; Hahs, AK ; Mata, L ; Stork, N ; Livesley, SJ (ELSEVIER SCI LTD, 2015-07)
    Networks of urban green space can provide critical resources for wild bees, however it is unclear which attributes of green spaces provide these resources, or how their management can be improved to benefit a diversity of bee species. We examined bee communities in three dominant urban green space habitats: (1) golf courses (2) public parks and (3) front gardens and streetscapes in residential neighbourhoods in Melbourne, Australia and assessed which local and landscape attributes influenced bee communities. There was a greater abundance and richness of bee species in public parks compared to golf courses and residential neighbourhoods, where the latter habitat was dominated by European Honeybees (Apis mellifera). The occurrence of A. mellifera was positively associated with increases in flowering and native plants. Ground-nesting Homalictus species occurred more frequently in older golf courses and public parks surrounded by low impervious surface cover, and with a low diversity of flowering plants. Cavity nesting, floral specialists within the Colletidae family occurred more often in green space habitats with greater native vegetation, and occurred infrequently in residential neighbourhoods. The lack of appropriate nesting habitat and dominance of exotic flowering plants in residential neighbourhoods appeared to positively impact upon the generalist A. mellifera, but negatively affected cavity and ground nesting floral specialist bee species (e.g. Halictidae and Colletidae). Our results highlight the need to include urban areas in pollinator conservation initiatives, as providing resources critical to diverse bee communities can assist in maintaining these key pollinators in urban landscapes.
  • Item
    Thumbnail Image
    Increasing biodiversity in urban green spaces through simple vegetation interventions
    Threlfall, CG ; Mata, L ; Mackie, JA ; Hahs, AK ; Stork, NE ; Williams, NSG ; Livesley, SJ ; Beggs, J (WILEY, 2017-12)
    Summary Cities are rapidly expanding world‐wide and there is an increasing urgency to protect urban biodiversity, principally through the provision of suitable habitat, most of which is in urban green spaces. Despite this, clear guidelines of how to reverse biodiversity loss or increase it within a given urban green space is lacking. We examined the taxa‐ and species‐specific responses of five taxonomically and functionally diverse animal groups to three key attributes of urban green space vegetation that drive habitat quality and can be manipulated over time: the density of large native trees, volume of understorey vegetation and percentage of native vegetation. Using multi‐species occupancy‐detection models, we found marked differences in the effect of these vegetation attributes on bats, birds, bees, beetles and bugs. At the taxa‐level, increasing the volume of understorey vegetation and percentage of native vegetation had uniformly positive effects. We found 30–120% higher occupancy for bats, native birds, beetles and bugs with an increase in understorey volume from 10% to 30%, and 10–140% higher occupancy across all native taxa with an increase in the proportion of native vegetation from 10% to 30%. However, increasing the density of large native trees had a mostly neutral effect. At the species‐specific level, the majority of native species responded strongly and positively to increasing understorey volume and native vegetation, whereas exotic bird species had a neutral response. Synthesis and applications. We found the probability of occupancy of most species examined was substantially reduced in urban green spaces with sparse understorey vegetation and few native plants. Our findings provide evidence that increasing understorey cover and native plantings in urban green spaces can improve biodiversity outcomes. Redressing the dominance of simplified and exotic vegetation present in urban landscapes with an increase in understorey vegetation volume and percentage of native vegetation will benefit a broad array of biodiversity.
  • Item
    No Preview Available
    Land use change and the impact on greenhouse gas exchange in north Australian savanna soils
    Grover, SPP ; Livesley, SJ ; Hutley, LB ; Jamali, H ; Fest, B ; Beringer, J ; Butterbach-Bahl, K ; Arndt, SK (COPERNICUS GESELLSCHAFT MBH, 2012)
    Abstract. Savanna ecosystems are subjected to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicate sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5–7 and 25–30 yr ago, respectively) in the Douglas Daly region of Northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m−2 h−1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m−2 h−1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha−1 yr−1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha−1 yr−1) and young pasture (20.0 t CO2-C ha−1 yr−1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ∼ 70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.
  • Item
    No Preview Available
    Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia
    Livesley, SJ ; Grover, S ; Hutley, LB ; Jamali, H ; Butterbach-Bahl, K ; Fest, B ; Beringer, J ; Arndt, SK (ELSEVIER, 2011-11-15)
    Tropical savanna ecosystems are a major contributor to global CO₂, CH₄ and N₂O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N₂O and CH₄ exchange. We measured soil CO₂, CH₄ and N₂O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1–2 years). There was no seasonal change and no fire effect upon soil N₂O exchange. Soil N₂O fluxes were very low, generally between −1.0 and 1.0μg Nm⁻²h⁻¹, and often below the minimum detection limit. There was an increase in soil NH₄ ⁺ in the months after the 2008 fire event, but no change in soil NO₃ ⁻. There was considerable nitrification in the early wet season but minimal nitrification at all other times. Savanna soil was generally a net CH₄ sink that equated to between −2.0 and −1.6kg CH₄ha⁻¹y⁻¹ with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH₄ uptake. There were short periods of soil CH₄ emission, up to 20μg Cm⁻²h⁻¹, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO₂ fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH₄ fluxes, but a much stronger relationship with soil CO₂ fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N₂O source, and possibly even a sink. Annual soil CH₄ flux measurements suggest that the 1.9million km² of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO₂-e per year. This sink estimate would offset potentially 10% of Australian transport related CO₂-e emissions. This CH₄ sink estimate does not include concurrent CH₄ emissions from termite mounds or ephemeral wetlands in Australian savannas.
  • Item
    No Preview Available
    The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific
    Jamali, H ; Livesley, SJ ; Hutley, LB ; Fest, B ; Arndt, SK (COPERNICUS GESELLSCHAFT MBH, 2013)
    Abstract. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Thus, there is no generic relationship that will allow for the accurate prediction of CH4 fluxes from termite mounds of all species, but given the data limitations, the above methods may still be used with caution.
  • Item
    No Preview Available
    Differences in carbon density and soil CH4/N2O flux among remnant and agro-ecosystems established since European settlement in the Mornington Peninsula, Australia
    Livesley, SJ ; Idczak, D ; Fest, BJ (ELSEVIER, 2013-11-01)
    National and regional C emissions from historical land use change (LUC) and fossil fuel use are proposed as a basis to ascribe 'burden-sharing' for global emission reduction targets. Changes in non-CO2 greenhouse gas emissions as a result of LUC have not been considered, but may be considerable. We measured soil-atmosphere exchange of methane (CH4) and nitrous oxide (N2O) in remnant forest, pasture and viticulture systems in four seasons, as well as differences in soil C density and the C density of remnant forest vegetation. This approach enabled comparative assessment of likely changes in ecosystem C density and soil non-CO2 greenhouse gas exchange along a LUC continuum since European settlement. Soil CH4 uptake was moderate in forest soil (-27 μg C m(-2) h(-1)), and significantly different to occasionally large CH4 emissions from viticulture and pasture soils. Soil N2O emissions were small and did not significantly differ. Soil C density increased significantly with conversion from forest (5 kg m(-2)) to pasture (9 kg m(-2)), and remained high in viticulture. However, there was a net decrease in ecosystem C density with forest conversion to pasture. Concurrently, net soil non-CO2 emissions (CH4 and N2O combined) increased with conversion from forest to pasture. Since European settlement 170 years ago, it was estimated ~8114 Gg CO2-e has been released from changes in ecosystem C density in the Mornington Peninsula, whereas ~383 Gg CO2-e may have been released from changes in soil non-CO2 exchange processes. Principally, a switch from soil CH4 uptake to soil CH4 emission after forest clearing to agro-pastoral systems provided this further ~5% contribution to the historical landscape CO2-e source strength. Conserving and restoring remnant forests and establishing new tree-based systems will enhance landscape C density. Similarly, minimising anaerobic, wet conditions in pasture/viticulture soils will help reduce non-CO2 greenhouse gas emissions.
  • Item
    No Preview Available
    Soil Methane Uptake Increases under Continuous Throughfall Reduction in a Temperate Evergreen, Broadleaved Eucalypt Forest
    Fest, B ; Hinko-Najera, N ; von Fischer, JC ; Livesley, SJ ; Arndt, SK (SPRINGER, 2017-03)
    Soils in temperate forests ecosystems are the greatest terrestrial CH₄ sink globally. Global and regional circulation models predict decreased average rainfall, increased extreme rainfall events and increased temperatures for many temperate ecosystems. However, most studies of soil CH₄ uptake have only considered extended periods of drought rather than an overall decrease in rainfall amount. We measured soil CH₄ uptake from March 2010 to March 2012 after installing passive rainfall reduction systems to intercept approximately 40% of throughfall in a temperate broadleaf evergreen eucalypt forest in south-eastern Australia. Throughfall reduction caused an average reduction of 15.1 ± 6.4% (SE) in soil volumetric water content, a reduction of 19.8 ± 6.9% in soil water-filled pore space (%WFPS) and a 20.1 ± 6.8% increase in soil air-filled porosity. In response to these changes, soil CH₄ uptake increased by 54.7 ± 19.3%. The increase in soil CH₄ uptake could be explained by increased diffusivity in drier soils, whilst the activity of methanotrophs remained relatively unchanged. It is likely that soil CH₄ uptake will increase if rainfall reduces in temperate broadleaf evergreen forests of Australia as a consequence of climate change.