School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Decision-making of municipal urban forest managers through the lens of governance
    Ordonez, C ; Threlfall, CG ; Livesley, SJ ; Kendal, D ; Fuller, RA ; Davern, M ; van der Ree, R ; Hochuli, DF (ELSEVIER SCI LTD, 2020-02)
    Awareness of the benefits of urban trees has led many cities to develop ambitious targets to increase tree numbers and canopy cover. Policy instruments that guide the planning of cities recognize the need for new governance arrangements to implement this agenda. Urban forests are greatly influenced by the decisions of municipal managers, but there is currently no clear understanding of how municipal managers find support to implement their decisions via new governance arrangements. To fill this knowledge gap, we collected empirical data through interviews with 23 urban forest municipal managers in 12 local governments in Greater Melbourne and regional Victoria, Australia, and analysed these data using qualitative interpretative methods through a governance lens. The goal of this was to understand the issues and challenges, stakeholders, resources, processes, and rules behind the decision-making of municipal managers. Municipal managers said that urban densification and expansion were making it difficult for them to implement their strategies to increase tree numbers and canopy cover. The coordination of stakeholders was more important for managers to find support to implement their decisions than having a bigger budget. The views of the public or wider community and a municipal government culture of risk aversion were also making it difficult for municipal managers to implement their strategies. Decision-making priorities and processes were not the same across urban centres. Lack of space to grow trees in new developments, excessive tree removal, and public consultation, were ideas more frequently raised in inner urban centres, while urban expansion, increased active use of greenspaces, and lack of data/information about tree assets were concerns for outer and regional centres. Nonetheless, inter-departmental coordination was a common theme shared among all cities. Strengthening coordination processes is an important way for local governments to overcome these barriers and effectively implement their urban forest strategies.
  • Item
    Thumbnail Image
    Supporting Growth and Transpiration of Newly Planted Street Trees With Passive Irrigation Systems
    Thom, JK ; Fletcher, TD ; Livesley, SJ ; Grey, V ; Szota, C (Wiley Open Access, 2022-01)
    Solutions that use stormwater runoff to rapidly establish tree canopy cover in cities have received significant attention. Passive irrigation systems that direct stormwater to trees have the potential to increase growth and transpiration and may limit drought stress. However, little data from the field demonstrates this, and we lack robust and reliable designs which achieve it. Here, we quantified growth and transpiration for trees: (a) in infiltration pits receiving stormwater, with a raised underdrain and internal water storage (drained), (b) next to infiltration pits receiving stormwater but without an underdrain and internal water storage (adjacent), and (c) planted in standard pits, not receiving stormwater (control). Trees in drained pits grew twice as fast as control trees in the first 2 years, but fast initial growth rates were not sustained in years three and four. Trees outgrowing the small infiltration pits, rather than a lack of water, was most likely responsible for growth rates slowing down. Despite this, rapid initial growth for trees in drained pits meant trees were larger by year three and transpired more than twice as much (5.1 L d−1) as trees adjacent to pits (2.4 L d−1) or control trees (2.3 L d−1). No trees showed drought stress during the study. However, some trees planted adjacent to infiltration pits showed waterlogging stress, suggesting caution installing infiltration pits adjacent to establishing trees in fine‐textured soils. Overall, our results suggest passive irrigation systems can substantially increase initial tree growth, thereby facilitating greater cooling and runoff reduction through increased transpiration.
  • Item
    No Preview Available
    Can we integrate ecological approaches to improve plant selection for green infrastructure?
    Farrell, C ; Livesley, SJ ; Arndt, SK ; Beaumont, L ; Burley, H ; Ellsworth, D ; Esperon-Rodriguez, M ; Fletcher, TD ; Gallagher, R ; Ossola, A ; Power, SA ; Marchin, R ; Rayner, JP ; Rymer, PD ; Staas, L ; Szota, C ; Williams, NSG ; Leishman, M (ELSEVIER GMBH, 2022-10)
  • Item
    No Preview Available
    Daytime irrigation leads to significantly cooler private backyards in summer
    Cheung, PK ; Jim, CY ; Tapper, N ; Nice, KA ; Livesley, SJ (ELSEVIER, 2022-12)
  • Item
    No Preview Available
    Public satisfaction with urban trees and their management in Australia: The roles of values, beliefs, knowledge, and trust
    Kendal, D ; Ordonez, C ; Davern, M ; Fuller, RA ; Hochuli, DF ; van der Ree, R ; Livesley, SJ ; Threlfall, CG (ELSEVIER GMBH, 2022-07)
  • Item
    No Preview Available
    Selecting tree species with high transpiration and drought avoidance to optimise runoff reduction in passive irrigation systems
    Thom, JK ; Livesley, SJ ; Fletcher, TD ; Farrell, C ; Arndt, SK ; Konarska, J ; Szota, C (ELSEVIER, 2022-03-15)
    Rainfall in cities can generate large volumes of stormwater runoff which degrades receiving waterways. Irrigating trees with runoff (passive irrigation) has the potential to increase transpiration and contribute to stormwater management by reducing runoff received by downstream waterways, but the stochastic nature of rainfall may expose trees with high transpiration to drought stress. We hypothesized that for success in passive irrigation systems, tree species should exhibit i) high maximum transpiration rates under well-watered conditions, ii) drought avoidance between rainfall events, and iii) high recovery of transpiration with rainfall following a drought. We assessed 13 commonly planted urban tree species in Melbourne, Australia against three metrics representing these behaviours (crop factor, hydroscape area, and transpiration recovery, respectively) in a glasshouse experiment. To aid species selection, we also investigated the relationships between these three metrics and commonly measured plant traits, including leaf turgor loss point, wood density, and sapwood to leaf area ratio (Huber value). Only one species (Tristaniopsis laurina) exhibited a combination of high crop factor (>1.1 mm mm-1 d-1) indicating high transpiration, small hydroscape area (<3 MPa2) indicating drought avoidance, and high transpiration recovery (>85%) following water deficit. Hence, of the species measured, it had the greatest potential to reduce runoff from passive irrigation systems while avoiding drought stress. Nevertheless, several other species showed moderate transpiration, hydroscape areas and transpiration recovery, indicating a balanced strategy likely suitable for passive irrigation systems. Huber values were negatively related to crop factor and transpiration recovery and may therefore be a useful tool to aid species selection. We propose that selecting tree species with high transpiration rates that can avoid drought and recover well could greatly reduce stormwater runoff, while supporting broader environmental benefits such as urban cooling in cities.
  • Item
    Thumbnail Image
    Editorial: Urban soil formation, properties, classification, management, and function
    Scharenbroch, BC ; Trammell, TL ; Paltseva, A ; Livesley, SJ ; Edmondson, J (FRONTIERS MEDIA SA, 2022-08-19)
  • Item
    Thumbnail Image
    How Urban Forest Managers Evaluate Management and Governance Challenges in Their Decision-Making
    Ordonez, C ; Kendal, D ; Threlfall, CG ; Hochuli, DF ; Davern, M ; Fuller, RA ; van der Ree, R ; Livesley, SJ (MDPI, 2020-09)
    Decisions about urban forests are critical to urban liveability and resilience. This study aimed to evaluate the range of positions held by urban forest managers from local governments in the state of Victoria, Australia, regarding the management and governance challenges that affect their decision-making. This study was based on a Q-method approach, a procedure that allows researchers to evaluate the range of positions that exist about a topic in a structured manner based on the experiences of a wide group of people. We created statements on a wide range of urban forest management and governance challenges and asked urban forest managers to rate their level of agreement with these statements via an online survey. Managers generally agreed about the challenges posed by urban development and climate change for implementing local government policies on urban forest protection and expansion. However, there were divergent views about how effective solutions based on increasing operational capacities, such as increasing budgets and personnel, could address these challenges. For some managers, it was more effective to improve critical governance challenges, such as inter-departmental and inter-municipal coordination, community engagement, and addressing the culture of risk aversion in local governments. Urban forest regional strategies aimed at coordinating management and governance issues across cities should build on existing consensus on development and environmental threats and address critical management and governance issues not solely related to local government operational capacity.
  • Item
    Thumbnail Image
    Water Smart Cities Increase Irrigation to Provide Cool Refuge in a Climate Crisis
    Livesley, SJ ; Marchionni, V ; Cheung, PK ; Daly, E ; Pataki, DE (AMER GEOPHYSICAL UNION, 2021-01)
    Abstract Water smart cities are increasing their use of irrigation and misting to cope with extreme heat and drought. This is being enabled by widespread use of rainwater tanks, stormwater capture and storage systems, and recycled sewage wastewater to irrigate street trees as well as private and public green spaces. These alternative water resources provide new options for cities to better withstand and function under extreme summer heatwave conditions with little or no impact on drinking water supplies. Small‐scale approaches to evaporatively cool urban animals, vegetation habitat, and people are showing initial success. However, ongoing testing and modeling are needed to understand the impacts of scaling up these interventions and to evaluate their cost‐effectiveness. We describe current innovations in irrigation of Australian cities to help policy development in other countries and cities experiencing similar climates with episodic summer heatwaves.