School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Short-interval, high-severity wildfires cause declines in soil seed bank diversity in montane forests of south-eastern Australia
    Duivenvoorden, E ; Wagner, B ; Nitschke, CR ; Kasel, S (Elsevier, 2024-02-01)
    Wildfires in forested ecosystems are increasing in severity and extent. The adaptations many plants have acquired in response to their natural fire regime may not be sufficient to allow some species to persist. This could impact the forest understorey and its seed bank, which are vital reservoirs of biodiversity, and forest resilience in the face of global change. We present a case study of the montane forests of south-eastern Australia, an area subjected to an increase in frequency and severity of fires. We utilise field surveys and a soil seed bank germination study to investigate if short-interval, high-severity wildfires affect the understorey diversity in montane forests, and if the extant vegetation and the soil seed bank exhibit contrasting responses. We consider species diversity and plant functional traits to explore plant diversity in long unburned sites, and sites with one, two or three short-interval, high-severity fires in the past 25 years. With increasing fire frequency, we found a decrease in total species richness, Shannon's diversity, and the richness of resprouters in the soil seed bank, contrasting a lack of response in the extant vegetation. Increased fire frequency shifted the species composition and the frequency of plant functional groups of both extant vegetation and soil seed bank towards a decrease in clonal resprouters and increase in grasses and other upright herbs. The frequency of wind-dispersed perennials and short-lived seeders and exotics increased sharply following single high severity burn, particularly in the soil seed bank, and remained elevated relative to long unburnt with subsequent fire. The combined species (extant vegetation plus soil seed bank) pool mirrored shifts in the frequency of functional groups in extant vegetation and soil seed bank. These findings highlight the importance of considering the soil seed bank when examining the effects of fire on fire-prone forests. Although a lack of response in the extant vegetation may be a buffering effect of the soil seed bank, the shift in the frequency of plant functional groups in the combined species pool suggests this cannot be maintained indefinitely. The increase in frequency and abundance of species characteristic of early successional states has implications for increased flammability and potential positive feedbacks between past fire and future fire, especially in a warming and drying climate. These shifts were independent of the fire response strategy of eucalypt canopy species raising significant questions of whether artificial re-seeding programs should extend beyond the current focus on obligate seeding forests and an obligate seeding tree.
  • Item
    No Preview Available
    Soil seed banks provide a storage effect in post-logging regrowth forests southeastern Australia
    Singh, A ; Nitschke, CR ; Hui, FKC ; Baker, P ; Kasel, S (ELSEVIER, 2023-11-15)
  • Item
    No Preview Available
    Canopy Composition and Spatial Configuration Influences Beta Diversity in Temperate Regrowth Forests of Southeastern Australia
    Singh, A ; Wagner, B ; Kasel, S ; Baker, PJ ; Nitschke, CR (MDPI, 2023-03)
    Structural features of the overstorey in managed and unmanaged forests can significantly influence plant community composition. Native Acacia species are common in temperate eucalypt forests in southeastern Australia. In these forests, intense disturbances, such as logging and wildfire, lead to high densities of regenerating trees, shrubs, and herbs. The tree layer is dominated by Acacia and Eucalyptus, that compete intensely for resources in the first decades after stand establishment. The relative abundance and size of Acacia and Eucalyptus varies widely due to stochastic factors such as dispersal, microsite variability, and weather and climatic conditions. This variability may influence the structure and composition of the herbaceous and shrub species. In the temperate forests of southeastern Australia, understorey plant diversity is assumed to be influenced by Acacia species density, rather than Eucalyptus density. To quantify the influence of Acacia and Eucalyptus density on plant community composition, we used remote sensing and machine learning methods to map canopy composition and then compare it to understorey composition. We combined unoccupied aerial vehicle (UAV or drone) imagery, supervised image classifications, and ground survey data of plant composition from post-logging regrowth forests in the Central Highlands of southeastern Australia. We found that aggregation and patch metrics of Eucalyptus and Acacia were strongly associated with understorey plant beta diversity. Increasing aggregation of Acacia and the number of Acacia patches had a significant negative effect on plant beta diversity, while the number of Eucalyptus patches had a positive influence. Our research demonstrates how accessible UAV remote sensing can be used to quantify variability in plant biodiversity in regrowth forests. This can help forest managers map patterns of plant diversity at the stand-scale and beyond to guide management activities across forested landscapes.
  • Item
    Thumbnail Image
    Acacia Density, Edaphic, and Climatic Factors Shape Plant Assemblages in Regrowth Montane Forests in Southeastern Australia
    Singh, A ; Kasel, S ; Hui, FKC ; Trouve, R ; Baker, PJ ; Nitschke, CR (MDPI, 2023-06)
    A fundamental requirement of sustainable forest management is that stands are adequately regenerated after harvesting. To date, most research has focused on the regeneration of the dominant timber species and to a lesser degree on plant communities. Few studies have explored the impact of the regeneration success of dominant tree species on plant community composition and diversity. In this study, we quantified the influence of variability in tree density and climatic and edaphic factors on plant species diversity in montane regrowth forests dominated by Eucalyptus regnans in the Central Highlands of Victoria in southeastern Australia. We found that Acacia density shaped plant biodiversity more than Eucalyptus density. Edaphic factors, particularly soil nutrition and moisture availability, played a significant role in shaping species turnover and occurrence. Our findings suggest that the density of Acacia is a key biotic filter that influences the occurrence of many understorey plant species and shapes plant community turnover. This should be considered when assessing the impacts of both natural and anthropogenic disturbances on plant biodiversity in the montane forests of southeastern Australia.
  • Item
    No Preview Available
    The role of climatic variability on Eucalyptus regeneration in southeastern Australia
    Singh, A ; Baker, PJ ; Kasel, S ; Trouve, R ; Stewart, SB ; Nitschke, CR (ELSEVIER, 2021-12)
  • Item
    Thumbnail Image
    Predicting plant species distributions using climate-based model ensembles with corresponding measures of congruence and uncertainty
    Stewart, SB ; Fedrigo, M ; Kasel, S ; Roxburgh, SH ; Choden, K ; Tenzin, K ; Allen, K ; Nitschke, CR ; Jarvis, S ; Jarvis, S (WILEY, 2022-03-17)
    Aim The increasing availability of regional and global climate data presents an opportunity to build better ecological models; however, it is not always clear which climate dataset is most appropriate. The aim of this study was to better understand the impacts that alternative climate datasets have on the modelled distribution of plant species, and to develop systematic approaches to enhancing their use in species distribution models (SDMs). Location Victoria, southeast Australia and the Himalayan Kingdom of Bhutan. Methods We compared the statistical performance of SDMs for 38 plant species in Victoria and 12 plant species in Bhutan with multiple algorithms using globally and regionally calibrated climate datasets. Individual models were compared against one another and as SDM ensembles to explore the potential for alternative predictions to improve statistical performance. We develop two new spatially continuous metrics that support the interpretation of ensemble predictions by characterizing the per-pixel congruence and variability of contributing models. Results There was no clear consensus on which climate dataset performed best across all species in either study region. On average, multi-model ensembles (across the same species with different climate data) increased AUC/TSS/Kappa/OA by up to 0.02/0.03/0.03/0.02 in Victoria and 0.06/0.11/0.11/0.05 in Bhutan. Ensembles performed better than most single models in both Victoria (AUC = 85%; TSS = 68%) and Bhutan (AUC = 86%; TSS = 69%). SDM ensembles using models fitted with alternative algorithms and/or climate datasets each provided a significant improvement over single model runs. Main conclusions Our results demonstrate that SDM ensembles, built using alternative models of the same climate variables, can quantify model congruence and identify regions of the highest uncertainty while mitigating the risk of erroneous predictions. Algorithm selection is known to be a large source of error for SDMs, and our results demonstrate that climate dataset selection can be a comparably significant source of uncertainty.
  • Item
    Thumbnail Image
    Environmental effects on germination phenology of co-occurring eucalypts: implications for regeneration under climate change
    Rawal, DS ; Kasel, S ; Keatley, MR ; Nitschke, CR (SPRINGER, 2015-09)
    Germination is considered one of the important phenological stages that are influenced by environmental factors, with timing and abundance determining plant establishment and recruitment. This study investigates the influence of temperature, soil moisture and light on the germination phenology of six Eucalyptus species from two co-occurring groups of three species representing warm-dry and cool-moist sclerophyll forests. Data from germination experiments were used to calibrate the germination module of the mechanistic model TACA-GEM, to evaluate germination phenology under a range of climate change scenarios. With the exception of E. polyanthemos, the optimal niche for all species was characterised by cool-moist stratification, low light, cool temperatures and high soil moisture. Model results indicated that of the warm-dry species, Eucalyptus microcarpa exhibited greater germination and establishment under projected changes of warmer drier conditions than its co-occurring species Eucalyptus polyanthemos and Eucalyptus tricarpa which suggests that E. microcarpa could maintain its current distribution under a warmer and drier climate in southeastern Australia. Among the cool-moist species, Eucalyptus radiata was the only species that established under projected climate change of the 2080s but at such a low probability that its persistence compared to Eucalyptus obliqua and Eucalyptus sieberi cannot be posited. For all cool-moist species, germination did not benefit from the phenological shifts they displayed. This study successfully demonstrated environmental effects on germination phenology and how a shift in climate can influence the timing and success of recruitment.
  • Item
    Thumbnail Image
    Environmental effects on growth phenology of co-occurring Eucalyptus species
    Rawal, DS ; Kasel, S ; Keatley, MR ; Aponte, C ; Nitschke, CR (SPRINGER, 2014-05)
    Growth is one of the most important phenological cycles in a plant's life. Higher growth rates increase the competitive ability, survival and recruitment and can provide a measure of a plant's adaptive capacity to climate variability and change. This study identified the growth relationship of six Eucalyptus species to variations in temperature, soil moisture availability, photoperiod length and air humidity over 12 months. The six species represent two naturally co-occurring groups of three species each representing warm-dry and the cool-moist sclerophyll forests, respectively. Warm-dry eucalypts were found to be more tolerant of higher temperatures and lower air humidity than the cool-moist eucalypts. Within groups, species-specific responses were detected with Eucalyptus microcarpa having the widest phenological niche of the warm-dry species, exhibiting greater resistance to high temperature and lower air humidity. Temperature dependent photoperiodic responses were exhibited by all the species except Eucalyptus tricarpa and Eucalyptus sieberi, which were able to maintain growth as photoperiod shortened but temperature requirements were fulfilled. Eucalyptus obliqua exhibited a flexible growth rate and tolerance to moisture limitation which enables it to maintain its growth rate as water availability changes. The wider temperature niche exhibited by E. sieberi compared with E. obliqua and Eucalyptus radiata may improve its competitive ability over these species where winters are warm and moisture does not limit growth. With climate change expected to result in warmer and drier conditions in south-east Australia, the findings of this study suggest all cool-moist species will likely suffer negative effects on growth while the warm-dry species may still maintain current growth rates. Our findings highlight that climate driven shifts in growth phenology will likely occur as climate changes and this may facilitate changes in tree communities by altering inter-specific competition.
  • Item
  • Item
    Thumbnail Image
    Structural diversity underpins carbon storage in Australian temperate forests
    Aponte, C ; Kasel, S ; Nitschke, CR ; Tanase, MA ; Vickers, H ; Parker, L ; Fedrigo, M ; Kohout, M ; Ruiz-Benito, P ; Zavala, MA ; Bennett, LT ; Hickler, T (WILEY, 2020-05)
    Abstract Aim Forest carbon storage is the result of a multitude of interactions among biotic and abiotic factors. Our aim was to use an integrative approach to elucidate mechanistic relationships of carbon storage with biotic and abiotic factors in the natural forests of temperate Australia, a region that has been overlooked in global analyses of carbon‐biodiversity relations. Location South‐eastern Australia. Time period 2010–2015. Major taxa studied Forest trees in 732 plots. Methods We used the most comprehensive forest inventory database available for south‐eastern Australia and structural equation models to assess carbon‐storage relationships with biotic factors (species or functional diversity, community‐weighted mean (CWM) trait values, structural diversity) and abiotic factors (climate, soil, fire history). To assess the consistency of relationships at different environmental scales, our analyses involved three levels of data aggregation: six forest types, two forest groups (representing different growth environments), and all forests combined. Results Structural diversity was consistently the strongest independent predictor of carbon storage at all levels of data aggregation, whereas relationships with species‐ and functional‐diversity indices were comparatively weak. CWMs of maximum height and wood density were also significant independent predictors of carbon storage in most cases. In comparison, climate, soil, and fire history had only minor and mainly indirect effects via biotic factors on carbon storage. Main conclusions Our results indicate that carbon storage in our temperate forests was underpinned by tree structural diversity (representing efficient utilisation of space) and by CWM trait values (representing selection effects) more so than by tree species richness or functional diversity. Abiotic effects were comparatively weak and mostly indirect via biotic factors irrespective of the environmental range. Our study highlights the importance of managing forests for functionally important species and to maintain and enhance their structural complexity in order to support carbon storage.