School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Diurnal and seasonal variations in photosynthetic and morphological traits of the tree ferns Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) in wet sclerophyll forests of Australia
    Volkova, L ; Bennett, LT ; Tausz, M (PERGAMON-ELSEVIER SCIENCE LTD, 2011-01)
    Steady state and dynamic responses of two tree fern species of contrasting origins, Dicksonia antarctica (of Gondwanan origin) and Cyathea australis (Pan-tropical), were studied over two consecutive years under field conditions in a wet sclerophyll forest of south-east Australia. Irrespective of their different origins, there were no significant differences in photosynthetic performance between the two species. Growth irradiance and leaf temperature, but not plant water status, was significantly related to photosynthetic and morphological traits. At a common leaf temperature, maximum light-use efficiency of photosystem II (Fv/Fm) was significantly lower in winter than in summer, suggesting some limitation to PSII efficiency potentially associated with cold winter mornings. Both species displayed seasonal acclimation in a number of measured photosynthetic parameters and frond traits (i.e. Fv/Fm, Asat, gs, NA, total chlorophyll, SLA). Acclimation of stomatal density to spatial variation in growth irradiance seemed limited in both species, although stomatal pattern differed between species. Because there were no significant differences between the two species in photosynthetic parameters, both species can be described by common carbon gain and water use models at the leaf scale.
  • Item
    Thumbnail Image
    Shade does not ameliorate drought effects on the tree fern species Dicksonia antarctica and Cyathea australis
    Volkova, L ; Bennett, LT ; Merchant, A ; Tausz, M (SPRINGER HEIDELBERG, 2010-04)
    We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under moderate and high light regimes to short-term water deficit followed by rewatering. Under adequate water supply, morphological and photosynthetic characteristics differed between species. D. antarctica, although putatively the more shade and less drought adapted species, had greater chlorophyll a/b ratio, and greater water use efficiency and less negative δ¹³C. Both species were susceptible to water deficit regardless of the light regime showing significant decreases in photosynthetic parameters (A max, V cmax, J max) and stomatal conductance (g s ) in conjunction with decreased relative frond water content (RWC) and predawn frond water potential (Ψpredawn). During the water deficit period, decreases in g s in both species started one day later, and were at lower soil water content, under moderate light compared with high light. D. antarctica under moderate light was more vulnerable to drought than all other plants as was indicated by greater decreases in Ψpredawn, lowest stomatal conductance, and photosynthetic rates. Both tree fern species were able to recover after a short but severe water stress.
  • Item
    Thumbnail Image
    Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea
    Wright, TE ; Tausz, M ; Kasel, S ; Volkova, L ; Merchant, A ; Bennett, LT (OXFORD UNIV PRESS, 2012-03)
    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.
  • Item
    Thumbnail Image
    Interactive effects of high irradiance and moderate heat on photosynthesis, pigments, and tocopherol in the tree-fern Dicksonia antarctica
    Volkova, L ; Tausz, M ; Bennett, LT ; Dreyer, E (CSIRO PUBLISHING, 2009)
    Effects of high irradiance and moderate heat on photosynthesis of the tree-fern Dicksonia antarctica (Labill., Dicksoniaceae) were examined in a climate chamber under two contrasting irradiance regimes (900 and 170 µmol photons m-2 s-1) and three sequential temperature treatments (15°C; 35°C; back to 15°C). High irradiance led to decline in predawn quantum yield of photochemistry, Fv/Fm (0.73), maximal Rubisco activity (Vcmax; from 37 to 29 µmol m-2s-1), and electron transport capacity (Jmax; from 115 to 67 µmol m-2 s-1). Temperature increase to 35°C resulted in further decreases in Fv/Fm (0.45) and in chlorophyll bleaching of high irradiance plants, while Vcmax and Jmax were not affected. Critical temperature for thylakoid stability (Tc) of D. antarctica was comparable with other higher plants (c. 47°C), and increases of Tc with air temperature were greater in high irradiance plants. Increased Tc was not associated with accumulation of osmotica or zeaxanthin formation. High irradiance increased the xanthophyll cycle pigment pool (V+A+Z, 91 v. 48 mmol mol-1 chlorophyll-1), de-epoxidation state (56% v. 4%), and α-tocopherol. Temperature increase to 35°C had no effect on V+A+Z and de-epoxidation state in both light regimes, while lutein, β-carotene and α-tocopherols increased, potentially contributing to increased membrane stability under high irradiance.
  • Item
    Thumbnail Image
    Effects of sudden exposure to high light levels on two tree fern species Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) acclimated to different light intensities
    Volkova, L ; Bennett, LT ; Tausz, M (CSIRO PUBLISHING, 2009)
    We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under shade or variable light (intermittent shade) to sudden exposure to high light levels. Steady-state gas exchange as well as dynamic responses of plants to artificial sunflecks indicated that difference in growth light environment had very little effect on the tree ferns' capacities to utilise and acclimate to prevailing light conditions. Two weeks of exposure to high light levels (short-term acclimation) led to decreases in all photosynthetic parameters and more negative predawn frond water potentials, mostly irrespective of previous growth light environments. After 3months in high light levels (long-term acclimation), D. antarctica fully recovered, while C. australis previously grown under variable light, recovered only partially, suggesting high light level stress effects under the variable light environments for this species.