School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Forecasting species range dynamics with process-explicit models: matching methods to applications
    Briscoe, NJ ; Elith, J ; Salguero-Gomez, R ; Lahoz-Monfort, JJ ; Camac, JS ; Giljohann, KM ; Holden, MH ; Hradsky, BA ; Kearney, MR ; McMahon, SM ; Phillips, BL ; Regan, TJ ; Rhodes, JR ; Vesk, PA ; Wintle, BA ; Yen, JDL ; Guillera-Arroita, G ; Early, R (WILEY, 2019-11)
    Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process-explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process-explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs - regulatory planning, extinction risk, climate refugia and invasive species - we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process-explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised.
  • Item
    Thumbnail Image
    Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical approaches for predictive inference
    Dormann, CF ; Calabrese, JM ; Guillera-Arroita, G ; Matechou, E ; Bahn, V ; Barton, K ; Beale, CM ; Ciuti, S ; Elith, J ; Gerstner, K ; Guelat, J ; Keil, P ; Lahoz-Monfort, JJ ; Pollock, LJ ; Reineking, B ; Roberts, DR ; Schroeder, B ; Thuiller, W ; Warton, DI ; Wintle, BA ; Wood, SN ; Wuest, RO ; Hartig, F (WILEY, 2018-11)
    Abstract In ecology, the true causal structure for a given problem is often not known, and several plausible models and thus model predictions exist. It has been claimed that using weighted averages of these models can reduce prediction error, as well as better reflect model selection uncertainty. These claims, however, are often demonstrated by isolated examples. Analysts must better understand under which conditions model averaging can improve predictions and their uncertainty estimates. Moreover, a large range of different model averaging methods exists, raising the question of how they differ in their behaviour and performance. Here, we review the mathematical foundations of model averaging along with the diversity of approaches available. We explain that the error in model‐averaged predictions depends on each model's predictive bias and variance, as well as the covariance in predictions between models, and uncertainty about model weights. We show that model averaging is particularly useful if the predictive error of contributing model predictions is dominated by variance, and if the covariance between models is low. For noisy data, which predominate in ecology, these conditions will often be met. Many different methods to derive averaging weights exist, from Bayesian over information‐theoretical to cross‐validation optimized and resampling approaches. A general recommendation is difficult, because the performance of methods is often context dependent. Importantly, estimating weights creates some additional uncertainty. As a result, estimated model weights may not always outperform arbitrary fixed weights, such as equal weights for all models. When averaging a set of models with many inadequate models, however, estimating model weights will typically be superior to equal weights. We also investigate the quality of the confidence intervals calculated for model‐averaged predictions, showing that they differ greatly in behaviour and seldom manage to achieve nominal coverage. Our overall recommendations stress the importance of non‐parametric methods such as cross‐validation for a reliable uncertainty quantification of model‐averaged predictions.