School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 47
  • Item
    Thumbnail Image
    Role of long non-coding RNAs in rice reproductive development
    Babaei, S ; Singh, MB ; Bhalla, PL (FRONTIERS MEDIA SA, 2022-11-15)
    Rice is a staple crop, feeding over half of the global population. The future demand of population growth and climate change requires substantial rice improvement. Recent advances in rice genomics have highlighted the vital role of the non-coding part of the genome. The protein-coding regions account for only a tiny portion of the eukaryotic genome, and most of the genomic regions transcribe copious amounts of non-coding RNAs. Of these, the long non-coding RNAs, including linear non-coding RNAs (lncRNAs) and circular non-coding RNAs (circRNAs), have been shown to play critical roles in various developmental processes by regulating the expression of genes and functions of proteins at transcriptional, post-transcriptional and post-translational levels. With the advances in next-generation sequencing technologies, a substantial number of long non-coding RNAs have been found to be expressed in plant reproductive organs in a cell- and tissue-specific manner suggesting their reproductive development-related functions. Accumulating evidence points towards the critical role of these non-coding RNAs in flowering, anther, and pollen development, ovule and seed development and photoperiod and temperature regulation of male fertility. In this mini review, we provide a brief overview of the role of the linear and circular long non-coding RNAs in rice reproductive development and control of fertility and crop yield.
  • Item
    No Preview Available
    Genome-wide analysis reveals the crucial role of lncRNAs in regulating the expression of genes controlling pollen development
    Lohani, N ; Golicz, AAA ; Allu, ADD ; Bhalla, PLL ; Singh, MBB (SPRINGER, 2023-02)
    The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.
  • Item
    Thumbnail Image
    Single-cell spatial analysis of tumor immune architecture in diffuse large B-cell lymphoma.
    Colombo, AR ; Hav, M ; Singh, M ; Xu, A ; Gamboa, A ; Lemos, T ; Gerdtsson, E ; Chen, D ; Houldsworth, J ; Shaknovich, R ; Aoki, T ; Chong, L ; Takata, K ; Chavez, EA ; Steidl, C ; Hicks, J ; Kuhn, P ; Siddiqi, I ; Merchant, A (American Society of Hematology, 2022-08-23)
    Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.
  • Item
    Thumbnail Image
    Identification of epithelial and mesenchymal circulating tumor cells in clonal lineage of an aggressive prostate cancer case.
    Chai, S ; Ruiz-Velasco, C ; Naghdloo, A ; Pore, M ; Singh, M ; Matsumoto, N ; Kolatkar, A ; Xu, L ; Shishido, S ; Aparicio, A ; Zurita, AJ ; Hicks, J ; Kuhn, P (Springer Science and Business Media LLC, 2022-06-21)
    Little is known about the complexity and plasticity of circulating tumor cell (CTC) biology in different compartments of the fluid microenvironment during tumor metastasis. Here we integrated phenomics, genomics, and targeted proteomics to characterize CTC phenotypic and genotypic heterogeneity in paired peripheral blood (PB) and bone marrow aspirate (BMA) from a metastatic prostate cancer patient following the rapid disease progression, using the High-Definition Single Cell Assay 3.0 (HDSCA3.0). Uniquely, we identified a subgroup of genetically clonal CTCs that acquired a mesenchymal-like state and its presence was significantly associated with one subclone that emerged along the clonal lineage. Higher CTC abundance and phenotypic diversity were observed in the BMA than PB and differences in genomic alterations were also identified between the two compartments demonstrating spatial heterogeneity. Single cell copy number profiling further detected clonal heterogeneity within clusters of CTCs (also known as microemboli or aggregates) as well as phenotypic variations by targeted proteomics. Overall, these results identify epithelial and mesenchymal CTCs in the clonal lineage of an aggressive prostate cancer case and also demonstrate a single cell multi-omic approach to deconvolute the heterogeneity and association of CTC phenotype and genotype in multi-medium liquid biopsies of metastatic prostate cancer.
  • Item
    Thumbnail Image
    Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers.
    Lohani, N ; Singh, MB ; Bhalla, PL (Frontiers Media SA, 2022)
    Climate change associated increases in the frequency and intensity of extreme temperature events negatively impact agricultural productivity and global food security. During the reproductive phase of a plant's life cycle, such high temperatures hinder pollen development, preventing fertilization, and seed formation. At the molecular level, heat stress-induced accumulation of misfolded proteins activates a signaling pathway called unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasm to enhance the protein folding capacity of the cell. Here, we report transcriptional responses of Brassica napus anthers exposed to high temperature for 5, 15, and 30 min to decipher the rapid transcriptional reprogramming associated with the unfolded protein response. Functional classification of the upregulated transcripts highlighted rapid activation of the ER-UPR signaling pathway mediated by ER membrane-anchored transcription factor within 5 min of heat stress exposure. KEGG pathway enrichment analysis also identified "Protein processing in ER" as the most significantly enriched pathway, indicating that the unfolded protein response (UPR) is an immediate heat stress-responsive pathway during B. napus anther development. Five minutes of heat stress also led to robust induction of the cytosolic HSF-HSP heat response network. Our results present a perspective of the rapid and massive transcriptional reprogramming during heat stress in pollen development and highlight the need for investigating the nature and function of very early stress-responsive networks in plant cells. Research focusing on very early molecular responses of plant cells to external stresses has the potential to reveal new stress-responsive gene networks that can be explored further for developing climate change resilient crops.
  • Item
    Thumbnail Image
    Biological Parts for Engineering Abiotic Stress Tolerance in Plants.
    Lohani, N ; Singh, MB ; Bhalla, PL (American Association for the Advancement of Science (AAAS), 2022)
    It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
  • Item
    Thumbnail Image
    Short-term heat stress during flowering results in a decline in Canola seed productivity
    Lohani, N ; Singh, MB ; Bhalla, PL (WILEY, 2022-08)
    Abstract Oilseed rape (Brassica napus) or Canola is an important oilseed crop produced and consumed globally. The predicted increase in the frequency of high‐temperature events associated with climate change poses a threat to Canola productivity. In the present work, we report the impact of short‐term heat stress on the reproductive fitness and yield components of Canola. Short heat stress episodes, especially above 36°C, resulted in diminished reproductive fitness due to reduced pollen viability and germinability. Heat stress exposure led to asynchronous male and female development and suppressed pollen development in developing buds. As the temperature increased above 32°C, the seed production decreased significantly. Temperatures beyond 38°C resulted in >50% reduction in total seed production and seed weight. Short‐term heat stress also reduced yield components, seed vigour and post‐harvest seed characteristics. Biochemical investigations of the seeds harvested from heat‐stressed (40°C for 12 hr) plants showed decreased oil content along with a variable fatty acid composition. The omega‐6/omega‐3 ratios increased in response to heat stress indicated a possible decline in oil nutritional quality. Understanding the impact of short heat stress episodes can provide efficient heat tolerance screening tools and pave the way for developing heat stress‐tolerant B. napus varieties.
  • Item
    Thumbnail Image
    Towards Developing Drought-smart Soybeans
    Arya, H ; Singh, MB ; Bhalla, PL (FRONTIERS MEDIA SA, 2021-10-06)
    Drought is one of the significant abiotic stresses threatening crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. Also, in dry periods, it may require supplemental irrigation for drought-susceptible soybean varieties. The effects of drought stress on soybean including osmotic adjustments, growth morphology and yield loss have been well studied. In addition, drought-resistant soybean cultivars have been investigated for revealing the mechanisms of tolerance and survival. Advanced high-throughput technologies have yielded remarkable phenotypic and genetic information for producing drought-tolerant soybean cultivars, either through molecular breeding or transgenic approaches. Further, transcriptomics and functional genomics have led to the characterisation of new genes or gene families controlling drought response. Interestingly, genetically modified drought-smart soybeans are just beginning to be released for field applications cultivation. In this review, we focus on breeding and genetic engineering approaches that have successfully led to the development of drought-tolerant soybeans for commercial use.
  • Item
    Thumbnail Image
    Circular RNAs Repertoire and Expression Profile during Brassica rapa Pollen Development
    Babaei, S ; Singh, MB ; Bhalla, PL (MDPI, 2021-10)
    Circular RNAs (circRNAs) are covalently closed RNA molecules generated by the back-splicing of exons from linear precursor mRNAs. Though various linear RNAs have been shown to play important regulatory roles in many biological and developmental processes, little is known about the role of their circular counterparts. In this study, we performed high-throughput RNA sequencing to delineate the expression profile and potential function of circRNAs during the five stages of pollen development in Brassica rapa. A total of 1180 circRNAs were detected in pollen development, of which 367 showed stage-specific expression patterns. Functional enrichment and metabolic pathway analysis showed that the parent genes of circRNAs were mainly involved in pollen-related molecular and biological processes such as mitotic and meiotic cell division, DNA processes, protein synthesis, protein modification, and polysaccharide biosynthesis. Moreover, by predicting the circRNA-miRNA network from our differentially expressed circRNAs, we found 88 circRNAs with potential miRNA binding sites, suggesting their role in post-transcriptional regulation of the genes. Finally, we confirmed the back-splicing sites of nine selected circRNAs using divergent primers and Sanger sequencing. Our study presents the systematic analysis of circular RNAs during pollen development and forms the basis of future studies for unlocking complex gene regulatory networks underpinning reproduction in flowering plants.
  • Item
    Thumbnail Image
    Featured Cover
    Arya, H ; Singh, MB ; Bhalla, PL (Wiley, 2021-08)