School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    No Preview Available
    Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene
    Komatsuda, T ; Pourkheirandish, M ; He, C ; Azhaguvel, P ; Kanamori, H ; Perovic, D ; Stein, N ; Graner, A ; Wicker, T ; Tagiri, A ; Lundqvist, U ; Fujimura, T ; Matsuoka, M ; Matsumoto, T ; Yano, M (NATL ACAD SCIENCES, 2007-01-23)
    Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1.
  • Item
    No Preview Available
    Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition
    Pourkheirandish, M ; Wicker, T ; Stein, N ; Fujimura, T ; Komatsuda, T (SPRINGER, 2007-05)
    In cultivated barley (Hordeum vulgare ssp. vulgare), six-rowed spikes produce three times as many seeds per spike as do two-rowed spikes. The determinant of this trait is the Mendelian gene vrs1, located on chromosome 2H, which is syntenous with rice (Oryza sativa) chromosomes 4 and 7. We exploited barley-rice micro-synteny to increase marker density in the vrs1 region as a prelude to its map-based cloning. The rice genomic sequence, covering a 980 kb contig, identified barley ESTs linked to vrs1. A high level of conservation of gene sequence was obtained between barley chromosome 2H and rice chromosome 4. A total of 22 EST-based STS markers were placed within the target region, and the linear order of these markers in barley and rice was identical. The genetic window containing vrs1 was narrowed from 0.5 to 0.06 cM, which facilitated covering the vrs1 region by a 518 kb barley BAC contig. An analysis of the contig sequence revealed that a rice Vrs1 orthologue is present on chromosome 7, suggesting a transposition of the chromosomal segment containing Vrs1 within barley chromosome 2H. The breakdown of micro-collinearity illustrates the limitations of synteny cloning, and stresses the importance of implementing genomic studies directly in the target species.
  • Item
    No Preview Available
    Genetic characterization of Iranian native Bombyx mori strains using amplified fragment length polymorphism markers
    Mirhoseini, SZ ; Dalirsefat, SB ; Pourkheirandish, M (OXFORD UNIV PRESS INC, 2007-06)
    Genetic relationships within and among seven Iranian native silkworm strains was determined by DNA fingerprinting by using amplified fragment length polymorphism (AFLP) markers. In total, 189 informative AFLP markers were generated and analyzed. Estimates of Nei's gene diversity for all loci in individual strains showed a higher degree of genetic similarity within each studied strain. The highest and the least degrees of gene diversity were related to Khorasan Pink (h = 0.1804) and Baghdadi (h = 0.1412) strains, respectively. The unweighted pair-group method with arithmetic average dendrogram revealed seven strains of silkworm, Bombyx mori (L.), resolving into two major clusters. The highest degree of genetic similarity was related to Baghdadi and Harati White, and the least degree was related to Guilan Orange and Harati Yellow. The genetic similarity estimated within and among silkworms could be explained by the pedigrees, historical and geographical distribution of the strains, effective population size, inbreeding rate, selection intensity, and gene flow. This study revealed that the variability of DNA fingerprints within and among silkworm strains could provide an essential basis for breeders in planning crossbreeding strategies to produce potentially hetrotic hybrids in addition to contributing in conservation programs.
  • Item
    No Preview Available
    A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
    Haile-Mariam, M ; Bowman, PJ ; Goddard, ME (BMC, 2007)
    A method that predicts the genetic composition and inbreeding (F) of the future dairy cow population using information on the current cow population, semen use and progeny test bulls is described. This is combined with information on genetic merit of bulls to compare bull selection methods that minimise F and maximise breeding value for profit (called APR in Australia). The genetic composition of the future cow population of Australian Holstein-Friesian (HF) and Jersey up to 6 years into the future was predicted. F in Australian HF and Jersey breeds is likely to increase by about 0.002 and 0.003 per year between 2002 and 2008, respectively. A comparison of bull selection methods showed that a method that selects the best bull from all available bulls for each current or future cow, based on its calf's APR minus F depression, is better than bull selection methods based on APR alone, APR adjusted for mean F of prospective progeny after random mating and mean APR adjusted for the relationship between the selected bulls. This method reduced F of prospective progeny by about a third to a half compared to the other methods when bulls are mated to current and future cows that will be available 5 to 6 years from now. The method also reduced the relationship between the bulls selected to nearly the same extent as the method that is aimed at maximising genetic gain adjusted for the relationship between bulls. The method achieves this because cows with different pedigree exist in the population and the method selects relatively unrelated bulls to mate to these different cows. Selecting the best bull for each current or future cow so that the calf's genetic merit minus F depression is maximised can slow the rate of increase in F in the population.
  • Item
    Thumbnail Image
    The importance of barley genetics and domestication in a global perspective
    Pourkheirandish, M ; Komatsuda, T (Oxford University Press (OUP), 2007-10-01)
    Background Archaeological evidence has revealed that barley (Hordeum vulgare) is one of the oldest crops used by ancient farmers. Studies of the time and place of barley domestication may help in understanding ancient human civilization. Scope The studies of domesticated genes in crops have uncovered the mechanisms which converted wild and unpromising wild species to the most important food for humans. In addition to archaeological studies, molecular studies are finding new insights into the process of domestication. Throughout the process of barley domestication human selection on wild species resulted in plants with more harvestable seeds. One of the remarkable changes during barley domestications was the appearance of six-rowed barley. The gene associated with this trait results in three times more seed per spike compared with ancestral wild barley. This increase in number of seed resulted in a major dichotomy in the evolution of barley. The identification of the six-rowed spike gene provided a framework for understanding how this character was evolved. Some important barley domestication genes have been discovered and many are currently being investigated. Conclusions Identification of domestication genes in crops revealed that most of the drastic changes during domestication are the result of functional impairments in transcription factor genes, and creation of new functions is rare. Isolation of the six-rowed spike gene revealed that this trait was domesticated more than once in the domestication history of barley. Six-rowed barley is derived from two-rowed ancestral forms. Isolation of photoperiod-response genes in barley and rice revealed that different genes belonging to similar genetic networks partially control this trait.
  • Item
    Thumbnail Image
    The development of descending projections from the brainstem to the spinal cord in the fetal sheep
    Stockx, EM ; Anderson, CR ; Murphy, SM ; Cooke, IRC ; Berger, PJ (BMC, 2007-06-18)
    BACKGROUND: Although the fetal sheep is a favoured model for studying the ontogeny of physiological control systems, there are no descriptions of the timing of arrival of the projections of supraspinal origin that regulate somatic and visceral function. In the early development of birds and mammals, spontaneous motor activity is generated within spinal circuits, but as development proceeds, a distinct change occurs in spontaneous motor patterns that is dependent on the presence of intact, descending inputs to the spinal cord. In the fetal sheep, this change occurs at approximately 65 days gestation (G65), so we therefore hypothesised that spinally-projecting axons from the neurons responsible for transforming fetal behaviour must arrive at the spinal cord level shortly before G65. Accordingly we aimed to identify the brainstem neurons that send projections to the spinal cord in the mature sheep fetus at G140 (term = G147) with retrograde tracing, and thus to establish whether any projections from the brainstem were absent from the spinal cord at G55, an age prior to the marked change in fetal motor activity has occurred. RESULTS: At G140, CTB labelled cells were found within and around nuclei in the reticular formation of the medulla and pons, within the vestibular nucleus, raphe complex, red nucleus, and the nucleus of the solitary tract. This pattern of labelling is similar to that previously reported in other species. The distribution of CTB labelled neurons in the G55 fetus was similar to that of the G140 fetus. CONCLUSION: The brainstem nuclei that contain neurons which project axons to the spinal cord in the fetal sheep are the same as in other mammalian species. All projections present in the mature fetus at G140 have already arrived at the spinal cord by approximately one third of the way through gestation. The demonstration that the neurons responsible for transforming fetal behaviour in early ontogeny have already reached the spinal cord by G55, an age well before the change in motor behaviour occurs, suggests that the projections do not become fully functional until well after their arrival at the spinal cord.
  • Item
    Thumbnail Image
    Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought
    Mantri, NL ; Ford, R ; Coram, TE ; Pang, ECK (BMC, 2007-09-02)
    BACKGROUND: Cultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. RESULTS: The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE) between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. CONCLUSION: The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.
  • Item
    Thumbnail Image
    Our Unsustainable Science and Technology
    Falvey, J (Asian Agri-History Foundation, 2007)
    This article is drawn from the recent book, ‘Religion and Agriculture: Sustainability in Christianity and Buddhism’. Among other subjects, the book explains sustainability in realistic terms as a useful but unattainable goal from all current approaches, and corrects misconceptions of environmental teachings being an essence of religion. It may be read as an opinion piece as it is presented without the extensive references that appear in the book itself. Or it may be read as a critique of conducting science without maintaining broad wonderment of the intricate interactions of nature.
  • Item
    Thumbnail Image
    Reaching the Top? All Paths are True on the Right Mountain
    Falvey, JL (lindsay falvey, 2007)
    Spiritual allegory.
  • Item
    Thumbnail Image
    Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy
    Tan, HO ; Reid, CA ; Single, FN ; Davies, PJ ; Chiu, C ; Murphy, S ; Clarke, AL ; Dibbens, L ; Krestel, H ; Mulley, JC ; others, (National Acad Sciences, 2007)
    Mutations in the GABA(A) receptor gamma2 subunit are associated with childhood absence epilepsy and febrile seizures. To understand better the molecular basis of absence epilepsy in man, we developed a mouse model harboring a gamma2 subunit point mutation (R43Q) found in a large Australian family. Mice heterozygous for the mutation demonstrated behavioral arrest associated with 6-to 7-Hz spike-and-wave discharges, which are blocked by ethosuximide, a first-line treatment for absence epilepsy in man. Seizures in the mouse showed an abrupt onset at around age 20 days corresponding to the childhood nature of this disease. Reduced cell surface expression of gamma2(R43Q) was seen in heterozygous mice in the absence of any change in alpha1 subunit surface expression, ruling out a dominant-negative effect. GABA(A)-mediated synaptic currents recorded from cortical pyramidal neurons revealed a small but significant reduction that was not seen in the reticular or ventrobasal thalamic nuclei. We hypothesize that a subtle reduction in cortical inhibition underlies childhood absence epilepsy seen in humans harboring the R43Q mutation.