School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Genomic expression profiling of mature soybean (Glycine max) pollen
    Haerizadeh, F ; Wong, CE ; Bhalla, PL ; Gresshoff, PM ; Singh, MB (BMC, 2009-03-06)
    BACKGROUND: Pollen, the male partner in the reproduction of flowering plants, comprises either two or three cells at maturity. The current knowledge of the pollen transcriptome is limited to the model plant systems Arabidopsis thaliana and Oryza sativa which have tri-cellular pollen grains at maturity. Comparative studies on pollen of other genera, particularly crop plants, are needed to understand the pollen gene networks that are subject to functional and evolutionary conservation. In this study, we used the Affymetrix Soybean GeneChip to perform transcriptional profiling on mature bi-cellular soybean pollen. RESULTS: Compared to the sporophyte transcriptome, the soybean pollen transcriptome revealed a restricted and unique repertoire of genes, with a significantly greater proportion of specifically expressed genes than is found in the sporophyte tissue. Comparative analysis shows that, among the 37,500 soybean transcripts addressed in this study, 10,299 transcripts (27.46%) are expressed in pollen. Of the pollen-expressed sequences, about 9,489 (92.13%) are also expressed in sporophytic tissues, and 810 (7.87%) are selectively expressed in pollen. Overall, the soybean pollen transcriptome shows an enrichment of transcription factors (mostly zinc finger family proteins), signal recognition receptors, transporters, heat shock-related proteins and members of the ubiquitin proteasome proteolytic pathway. CONCLUSION: This is the first report of a soybean pollen transcriptional profile. These data extend our current knowledge regarding regulatory pathways that govern the gene regulation and development of pollen. A comparison between transcription factors up-regulated in soybean and those in Arabidopsis revealed some divergence in the numbers and kinds of regulatory proteins expressed in both species.
  • Item
    Thumbnail Image
    Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways
    Wong, CE ; Singh, MB ; Bhalla, PL (TAYLOR & FRANCIS INC, 2009)
    The transition to flowering is characterized by a shift of the shoot apical meristem (SAM) from leaf production to the initiation of a floral meristem. The flowering process is of vital importance for agriculture, but the associated events or regulatory pathways in the SAM are not well understood, especially at a system level. To address this issue, we have used a GeneChip containing 37 744 probe sets to generate a temporal profile of gene expression during the floral initiation process in the SAM of the crop legume, soybean (Glycine max). A total of 331 transcripts displayed significant changes in their expression profiles. The in silico and RT-PCR analysis on differentially regulated transcripts implies the intriguing involvement of sugar, auxin or abscisic acid (ABA) in events prior to the induction of floral homeotic transcripts. The novel involvement of ABA in the floral transition is further implicated by immunoassay, suggesting an increase in ABA levels in the SAM during this developmental transition. Furthermore, in situ localization, together with in silico data demonstrating a marked enhancement of abiotic stress-related transcripts, such as trehalose metabolism genes in SAMs, points to an overlap of abiotic stress and floral signalling pathways.
  • Item
    Thumbnail Image
    Molecular dissection of the pea shoot apical meristem
    Liang, D ; Wong, CE ; Singh, MB ; Beveridge, CA ; Phipson, B ; Smyth, GK ; Bhalla, PL (OXFORD UNIV PRESS, 2009)
    The shoot apical meristem (SAM) is responsible for the development of all the above-ground parts of a plant. Our understanding of the SAM at the molecular level is incomplete. This study investigates the gene expression repertoire of SAMs in the garden pea (Pisum sativum). To this end, 10 346 EST sequences representing 7610 unique genes were generated from SAM cDNA libraries. These sequences, together with previously reported pea ESTs, were used to construct a 12K oligonucleotide array to identify genes with differential SAM expression, as compared to axillary meristems, root apical meristems, or non-meristematic tissues. A number of genes were identified, predominantly expressed in specific cell layers or domains of the SAM and thus are likely components of the gene networks involved in stem cell maintenance or the initiation of lateral organs. Further in situ hybridization analysis confirmed the spatial localization of some of these genes within the SAM. Our data also indicate the diversification of some gene expression patterns and hence functions in legume crop plants. A number of transcripts highly expressed in all three meristems have also been uncovered and these candidates may provide valuable insight into molecular networks that underpin the maintenance of meristematic functionality.