School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    A Wood Recovery Assessment Method Comparison between Batch and Cellular Production Systems in the Furniture Industry
    Prasetyo, VE ; Belleville, B ; Ozarska, B ; Mo, JPT (AMER SOC TESTING MATERIALS, 2019)
    Abstract Enhanced wood recovery mirrors a successful wood manufacturing operation. Studies of wood recovery in secondary wood processing, however, are scarce, particularly in furniture manufacturing. Although recovery rates are under the continuous surveillance of sophisticated technology, this attempt to monitor wood recovery would be especially challenging for small- to medium-sized furniture enterprises, as the capital investment in such technology would be substantial. This would hinder the possibility for improvements in production efficiency of the furniture industry. A methodology of wood recovery assessment in the furniture industry has been developed and proposed but has not been validated with a cellular production system, a different layout process and distinctive machinery, species, and other customer requirements. The objective of this study is to assess the wood recovery protocol individually used in batch and cellular production systems, followed by examining the wood recovery of furniture manufacturing in these distinct production systems. Two Indonesian medium-sized furniture companies that individually operate batch and cellular production systems were employed, and two methods, mass and volume, were used to assess wood recovery at each furniture-making station. There was a significant difference in cumulative wood recovery rates between batch and cellular production systems. Based on species and product dimensions, the average individual and cumulative wood recovery rates of furniture manufacturing resulted in a significant difference at the resawing and edging station. Large-dimension product recorded higher wood recovery level than small-dimension product. The wood recovery rates at the resawing and edging, surface planing, thickness planing, and trimming stations were mostly influenced by species, the quality of sawn timber, and cutting bills. Meanwhile, wood recovery at other stations was affected by product dimension and design. The mass method was the most acceptable method according to the measurement systems analysis.
  • Item
    Thumbnail Image
    Effect of Wood Welding Process on Chemical Constituents of Australian Eucalyptus
    Belleville, B ; Koumba-Yoya, G ; Stevanovic, T (Taylor & Francis, 2019-01-02)
    Thermochemical changes occurring during wood welding were investigated in Eucalyptus saligna and Eucalyptus pilularis. Unwelded reference wood and material from welded interface were compared via Py-GC/MS, TGA, XPS, and ATR-FTIR to explain differences in mechanical properties of welded wood between species. It appeared that the species originally containing more condensed substructures also provided stronger joints. The condensation index after welding allowed validating that the adhesive properties of lignin are more accessible in such species. The presence of more carbonyl functions, attributed to carbohydrate solicitation during welding process, potentially made lignin less accessible. Changes following welding were evidenced by the contribution of extractive compounds, fatty acid chains, and terpenoids, possibly reacting with hydroxyl groups and leading to adhesive properties by chemical linkage through new covalent bonds formation. Results corroborate the better mechanical properties of Eucalyptus saligna, providing stronger joints possibly due to more accessible adhesive properties by esterification between lignin and fatty acid.
  • Item
    No Preview Available
    Effect of Wood Welding Treatment on Chemical Constituents of Australian Eucalyptus species
    Belleville, B ; Koumba-Yoya, G ; Stevanovic, T ; Stevanovic, T (Taylor and Francis Group, 2019-01-01)
    Introduction: The potential of wood welding as a fast and cost-effective alternative to gluing for Australian hardwood species has been demonstrated in recent studies (Belleville et al. 2016, 2017). The technique consists in assembling solid wood pieces by mechanical friction to generate heat, which induces the thermochemical changes in lignin which lead to wood welding. The results so far confirm the importance of density and occurrence of anatomical features in the weld line strength and consequently the definition of optimal welding parameter (Leban et al. 2005; Properzi et al. 2005; Belleville et al. 2016). Polymeric material and other compounds present in woods studied previously have commonly been identified to explain observed differences between Canadian wood species (Rodriguez et al. 2010; Sun et al. 2010; Belleville et al. 2013, 2016).
  • Item
    Thumbnail Image
    Quality assessment of the drying process for Eucalyptus delegatensis timber using greenhouse solar drying technology
    Phonetip, K ; Ozarska, B ; Harris, G ; Belleville, B ; Brodie, G (Springer Verlag, 2019-01-24)
    The aim of this study was to investigate the process of drying Eucalyptus delegatensis in a greenhouse solar kiln. Specific objectives were to assess stress formation, moisture gradients and timber distortion, the moisture content distribution within various sections of the timber stack, and internal checking and collapse development within the boards. The maximal temperature and relative humidity (RH) during day time were set at 430C/72% RH. In the night time the temperature was at ambient condition with 90% RH. The strain measurements were undertaken before and after the samples were sliced. The timber quality at the end of drying was assessed based on Australian and New Zealand standard (AS/NZS 4787:2001). The moisture content values in the three different sections (front, middle and end) of 2400 mm long boards were compared by Analysis of Variance. The results showed that the mean compressive strain was -2 x 10-4 mm/mm in the core layers and the tensile strain was 14 x 10-4 mm/mm in the outer layers. All sample boards were within the acceptable limits for cupping, spring and bow, even though the relative humidity level did not reach the set value. However, the amount of twist in three out of twelve sample boards was above the acceptable limit. Mean moisture gradient was 0.6%. There was a significant difference in moisture content at end section compared to the front and middle sections. Internal checking, collapse and residual stress were graded as Class “C” (class A is the highest grade and D is the lowest).
  • Item
    Thumbnail Image
    Drying timber in a solar kiln using an intermittent drying schedule of conventional laboratory kiln
    Phonetip, K ; Brodie, G ; Ozarska, B ; Belleville, B (Taylor & Francis, 2018-10-01)
    The purpose of this study was to apply an intermittent drying schedule developed from a conventional kiln to a solar kiln. Implementing this experiment could help better understand the oscillation of the temperature inside a solar kiln and timber quality during drying progress. The theoretical recharge and discharge curves were used to predict the temperature inside the solar kiln using experimental data obtained previously using a solar kiln. The surface and internal checks were measured using ImageJ freeware, and the development of the Moisture Content (MC) profile was assessed by coring and slicing method for the Eucalyptus delegatensis boards during drying. The results showed that the recharge and dis-charge model can predict the temperature with less than 2 C error from the experimental data in the solar kiln. The total drying time to 12% MC was 87 days for the solar kiln. The drying rate was equivalent to the conventional kiln decreasing at an average rate of 0.2%per day. The surface check formation was found when the MC gradient between the core and the case of the board was greater than 42% at 9 days of drying in the solar kiln and conventional laboratory kiln. The applied drying schedule used in the solar kiln was success-ful and offered similar drying time. However, the oscillation of temperature in the intermittent drying will require further improvement to get closer conditions in a solar kiln.
  • Item
    Thumbnail Image
    Potential of Veneer Peeled from Young Eucalypts in Laos
    Belleville, B ; REDMAN, A ; Chounlamounty, P ; Phengthajam, V ; Xiong, S ; Boupha, L ; Ozarska, B (North Carolina State University, 2018-08-23)
    In Laos and neighboring countries, opportunities exist for the production of engineered wood products such as plywood and laminated veneer lumber to supply the rapid growth of construction, furnishing, and joinery activities. The objective of the present study was to assess the potential of peeling fast-growing high-yielding pulpwood from managed eucalypt stands in Laos for veneered products. Eucalyptus pellita, Eucalyptus camaldulensis, and eucalypt clone K7 (E. camaldulensis × E. deglupta) stands were characterized based on veneer quality and recovery. The influence of log position, log geometry, and other log traits during recovery were also investigated. The selected taxa achieved green veneer recoveries that ranged between 57% and 67%. End splitting and branch-related defects were the most important grade-limiting defects that restricted veneer sheet quality to a lower grade of most sheets. However, simple timely silvicultural decisions, such as pruning, could significantly help improve the quality of veneer obtained. The obtained results could be used in the formulation of recommendations to adopt better management practices in Laos to improve the value of plantation-grown wood.
  • Item
    Thumbnail Image
    A Proposed Method and Its Development for Wood Recovery Assessment in the Furniture Manufacturing Process
    Prasetyo, VE ; Belleville, B ; Ozarska, B (NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI, 2018)
    A proposed method for assessing wood recovery involves the application of a machining station approach with volume and mass measurements. A medium wood furniture company located in Jepara, Indonesia was selected to develop the method. Batch measurements of the inputs and outputs for different types of indoor-furniture products at every station were collected and analyzed. For the volume method, three dimensions were measured on each specimen: the length, width, and thickness. For the mass method, the specimens were weighed before and after each processing station using a balance. Based on the mass method, the average total wood recovery rate was 26.2% ± 2.3%. For individual products and per station, the significant difference in the wood recovery rate occurred only at the resawing and edging, and trimming stations. The relationship between the teak quality, product dimensions, and type of finish was significantly different, where A-quality teak, large dimensions, and polyurethane finish resulted in a higher wood recovery rate. Both methods were reliable because of insignificant differences in the wood recovery rates. However, the mass method was more efficient and practical. The proposed protocol using the mass method is a suitable and effective system because the contribution of the variance component of the method was 2.71%.
  • Item
    Thumbnail Image
    Comparing two intermittent drying schedules for timber drying quality
    Phonetip, K ; Belleville, B ; Ozarska, B ; Brodie, G (Taylor & Francis, 2018)
    Intermittent drying techniques for drying timber may provide various benefits by improving timber quality and addressing energy efficiency through saving in energy consumption. The purpose of this study was to compare two intermittent drying schedules applied in the treatment of Eucalyptus delegatensis boards, through assessing surface and internal check development, moisture content (MC) profiles during drying, and timber distortions at the end of drying. The study used identical conditions during the heating phase at 45°C/60% relative humidity (RH), except for RH during the nonheating phase (80 and 90%). The results, discussed in this paper, analyzed the timber quality during and at the end of drying. The different RH during the nonheating phase did not generate a significant difference in MC at the case boards between the two drying schedules. The assessed quality of timber at the end of drying was based on AS/NZS 4787:2001. MC gradient, drying stress residual, internal checking and collapse were graded as class “A” (class A is the highest grade and D is the lowest). Bow, cupping, and spring were under the permissible levels based on grading standard AS 2082–2007. Measured data were validated using Drytek® simulation software showing MC movement in case boards.
  • Item
    No Preview Available
    Applying a GIS-based Fuzzy Method to Identify Suitable Locations for Solar Kilns
    Phonetip, K ; Ozarska, B ; Brodie, GI ; Belleville, B ; Boupha, L (NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI, 2018)
  • Item
    Thumbnail Image
    Optimization of Wood Welding Parameters for Australian Hardwood Species
    BELLEVILLE, B ; Amirou, S ; Pizzi, A ; Ozarska, B (North Carolina State University, 2017)
    Optimal linear wood welding parameters along the end-grain-to-end-grain faces were determined for Eucalyptus saligna, Eucalyptus pilularis, and Corymbia maculata. Joints made using Eucalyptus saligna showed a significant interaction between welding time (WT), amplitude (WA), and pressure (WP). A preheating phase of 3 s at 0.4 MPa WP and 0.75 mm WA coupled with a WT of 2 s at 2.0 MPa WP and 1.5 mm WA provided the best shear strength results of 5.1 MPa. Joints made using Eucalyptus pilularis and Corymbia maculata snapped once the holding pressure was removed, suggesting that end-grain-to-end-grain welded fibers cannot withstand the thermal stresses generated when the surface to be welded is too small (e.g., 13.5 cm2). However, grain orientation had a significant effect on the weld mechanical properties, as very strong edge-grain-to-edge-grain joints were produced with Eucalyptus pilularis and Corymbia maculata (9.5 and 6.2 MPa, respectively). The joints made of Eucalyptus saligna also showed significant improvement (7.3 MPa). Energy efficient combinations were usually those involving low WA and short WT, as WP had a marginal effect on energy consumption.