School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    An integrated approach to assessing abiotic and biotic threats to post-fire plant species recovery: Lessons from the 2019-2020 Australian fire season
    Gallagher, R ; Allen, SP ; Mackenzie, BDE ; Keith, DA ; Nolan, RH ; Rumpff, L ; Gosper, CR ; Pegg, G ; van Leeuwen, S ; Ooi, MKJ ; Yates, CJ ; Merow, C ; Williams, RJ ; Nikolopoulos, E ; Beaumont, LJ ; Auld, TD (WILEY, 2022-10)
    Abstract Aim Existing abiotic and biotic threats to plant species (e.g., disease, drought, invasive species) affect their capacity to recover post‐fire. We use a new, globally applicable framework to assess the vulnerability of 26,062 Australian plant species to a suite of active threats after the 2019–2020 fires. Location Australia. Time period 2019–2020. Major species studied Plants. Methods Spatial data for existing threats and information on species‐level susceptibility were combined with estimates of the extent of range burnt in southern Australia (> 22°S) to assign species against 10 criteria into vulnerability categories (high, medium, low, none, data deficient). We explore in detail results for three threats (drought, disease, feral animals), highlighting where impacts from multiple threats ranked high vulnerability may compound to reduce post‐fire recovery. Results Analysis of the full suite of 10 vulnerability criteria, which encompass a broad range of threats, revealed large numbers of species vulnerable to poor post‐fire recovery from one or more different hazards (high vulnerability: 1,243 species; medium vulnerability: 2,450 species). Collectively, 457 plant species that burnt extensively (> 50%) across their range are highly vulnerable to poor recovery due to exposure to pre‐fire drought conditions (235 species), disease (186 species), or feral animals (97 species). Of these 457 species, 61 are vulnerable to more than one of these three threats, highlighting how a suite of interacting hazards can impact plant recovery after fire. Main conclusions While fire can renew plant populations by stimulating recruitment and resetting competitive interactions, the presence of existing threats in post‐fire landscapes jeopardizes recovery. The simultaneous impact of multiple threats that impact recovery can create a suite of hazards that contribute to declines and, potentially, extinction. Our method for rapid post‐fire vulnerability assessment can be applied to large numbers of plant species or other biota in fire affected regions globally.
  • Item
    Thumbnail Image
    Using Remote Sensing to Estimate Understorey Biomass in Semi-Arid Woodlands of South-Eastern Australia
    Riquelme, L ; Duncan, DH ; Rumpff, L ; Vesk, PA (MDPI, 2022-05)
    Monitoring ground layer biomass, and therefore forage availability, is important for managing large, vertebrate herbivore populations for conservation. Remote sensing allows for frequent observations over broad spatial scales, capturing changes in biomass over the landscape and through time. In this study, we explored different satellite-derived vegetation indices (VIs) for their utility in estimating understorey biomass in semi-arid woodlands of south-eastern Australia. Relationships between VIs and understorey biomass data have not been established in these particular semi-arid communities. Managers want to use forage availability to inform cull targets for western grey kangaroos (Macropus fuliginosus), to minimise the risk that browsing poses to regeneration in threatened woodland communities when grass biomass is low. We attempted to develop relationships between VIs and understorey biomass data collected over seven seasons across open and wooded vegetation types. Generalised Linear Mixed Models (GLMMs) were used to describe relationships between understorey biomass and VIs. Total understorey biomass (live and dead, all growth forms) was best described using the Tasselled Cap (TC) greenness index. The combined TC brightness and Modified Soil Adjusted Vegetation Index (MSAVI) ranked best for live understorey biomass (all growth forms), and grass (live and dead) biomass was best described by a combination of TC brightness and greenness indices. Models performed best for grass biomass, explaining 70% of variation in external validation when predicting to the same sites in a new season. However, we found empirical relationships were not transferrable to data collected from new sites. Including other variables (soil moisture, tree cover, and dominant understorey growth form) improved model performance when predicting to new sites. Anticipating a drop in forage availability is critical for the management of grazing pressure for woodland regeneration, however, predicting understorey biomass through space and time is a challenge. Whilst remotely sensed VIs are promising as an easily-available source of vegetation information, additional landscape-scale data are required before they can be considered a cost-efficient method of understorey biomass estimation in this semi-arid landscape.
  • Item
    Thumbnail Image
    Not Just Another Assessment Method: Reimagining Environmental Flows Assessments in the Face of Uncertainty
    Horne, AC ; Webb, JA ; Mussehl, M ; John, A ; Rumpff, L ; Fowler, K ; Lovell, D ; Poff, L (FRONTIERS MEDIA SA, 2022-05-10)
    The numerous environmental flows assessment methods that exist typically assume a stationary climate. Adaptive management is commonly put forward as the preferred approach for managing uncertainty and change in environmental flows. However, we contend that a simple adaptive management loop falls short of meeting the challenges posed by climate change. Rather, a fundamental rethink is required to ensure both the structure of environmental flows assessments, along with each individual technical element, actively acknowledges the multiple dimensions of change, variability and complexity in socio-ecological systems. This paper outlines how environmental flow assessments can explicitly address the uncertainty and change inherent in adaptively managing multiple values for management of environmental flows. While non-stationarity and uncertainty are well recognised in the climate literature, these have not been addressed within the structure of environmental flows methodologies. Here, we present an environmental flow assessment that is structured to explicitly consider future change and uncertainty in climate and socio-ecological values, by examining scenarios using ecological models. The environmental flow assessment methodology further supports adaptive management through the intentional integration of participatory approaches and the inclusion of diverse stakeholders. We present a case study to demonstrate the feasibility of this approach, highlighting how this methodology facilitates adaptive management. Rethinking our approach to environmental flows assessments is an important step in ensuring that environmental flows continue to work effectively as a management tool under climate change.
  • Item
    No Preview Available
    Permanent removal of livestock grazing in riparian systems benefits native vegetation
    Jones, CS ; Duncan, DH ; Rumpff, L ; Robinson, D ; Vesk, PA (ELSEVIER, 2022-01)
  • Item
    Thumbnail Image
    Understanding the spatiotemporal dynamics of understorey biomass in semi-arid woodlands of south-eastern Australia
    Riquelme, L ; Rumpff, L ; Duncan, DH ; Vesk, PA (CSIRO PUBLISHING, 2022)
    When managing grazing pressure for conservation, understanding forage dynamics is essential. In south-eastern Australia, ongoing grazing is inhibiting regeneration in several semi-arid woodland communities. Western grey kangaroos (Macropus fuliginosus (Desmarest, 1817)) have been identified as a key component of total grazing pressure. They are thought to switch from grass to lower-quality browse, including tree seedlings, when grass biomass falls below 400 kg ha−1. One static threshold may not adequately capture the spatial and temporal hazard associated with kangaroo grazing, and this study aimed to explore how grassy biomass varies across a case-study landscape. Understorey biomass and species composition data were collected in the field on seven occasions between December 2016 and May 2019. We used Generalised Linear Mixed Models (GLMMs) to describe the influence of environmental and herbivory variables on total (live and dead) understorey, live understorey, and grass (live and dead) biomass. Canopy cover showed the strongest influence on understorey biomass, with more biomass found in open sites than in woodland. Understorey biomass levels were lowest in summer and autumn. Grass biomass, in particular, fell below the 400 kg ha−1 forage-switch threshold in wooded areas during this time. We anticipate that an increased understanding of understorey biomass dynamics will inform managers as to when and where to focus management efforts to promote regeneration and sustained recovery of these semi-arid woodlands. Results of this study suggest that conducting management efforts before the summer/autumn decline in understorey biomass, particularly in woodlands, is critical in reducing the browsing risk to seedlings.
  • Item
    Thumbnail Image
    An introduction to decision science for conservation
    Hemming, V ; Camaclang, AE ; Adams, MS ; Burgman, M ; Carbeck, K ; Carwardine, J ; Chades, I ; Chalifour, L ; Converse, SJ ; Davidson, LNK ; Garrard, GE ; Finn, R ; Fleri, JR ; Huard, J ; Mayfield, HJ ; Madden, EM ; Naujokaitis-Lewis, I ; Possingham, HP ; Rumpff, L ; Runge, MC ; Stewart, D ; Tulloch, VJD ; Walshe, T ; Martin, TG (WILEY, 2022-02)
    Biodiversity conservation decisions are difficult, especially when they involve differing values, complex multidimensional objectives, scarce resources, urgency, and considerable uncertainty. Decision science embodies a theory about how to make difficult decisions and an extensive array of frameworks and tools that make that theory practical. We sought to improve conceptual clarity and practical application of decision science to help decision makers apply decision science to conservation problems. We addressed barriers to the uptake of decision science, including a lack of training and awareness of decision science; confusion over common terminology and which tools and frameworks to apply; and the mistaken impression that applying decision science must be time consuming, expensive, and complex. To aid in navigating the extensive and disparate decision science literature, we clarify meaning of common terms: decision science, decision theory, decision analysis, structured decision-making, and decision-support tools. Applying decision science does not have to be complex or time consuming; rather, it begins with knowing how to think through the components of a decision utilizing decision analysis (i.e., define the problem, elicit objectives, develop alternatives, estimate consequences, and perform trade-offs). This is best achieved by applying a rapid-prototyping approach. At each step, decision-support tools can provide additional insight and clarity, whereas decision-support frameworks (e.g., priority threat management and systematic conservation planning) can aid navigation of multiple steps of a decision analysis for particular contexts. We summarize key decision-support frameworks and tools and describe to which step of a decision analysis, and to which contexts, each is most useful to apply. Our introduction to decision science will aid in contextualizing current approaches and new developments, and help decision makers begin to apply decision science to conservation problems.
  • Item
    Thumbnail Image
    Rapid assessment of the biodiversity impacts of the 2019-2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions
    Legge, S ; Woinarski, JCZ ; Scheele, BC ; Garnett, ST ; Lintermans, M ; Nimmo, DG ; Whiterod, NS ; Southwell, DM ; Ehmke, G ; Buchan, A ; Gray, J ; Metcalfe, DJ ; Page, M ; Rumpff, L ; van Leeuwen, S ; Williams, D ; Ahyong, ST ; Chapple, DG ; Cowan, M ; Hossain, MA ; Kennard, M ; Macdonald, S ; Moore, H ; Marsh, J ; McCormack, RB ; Michael, D ; Mitchell, N ; Newell, D ; Raadik, TA ; Tingley, R ; Boer, M (WILEY, 2022-03)
    Abstract Aim The incidence of major fires is increasing globally, creating extraordinary challenges for governments, managers and conservation scientists. In 2019–2020, Australia experienced precedent‐setting fires that burned over several months, affecting seven states and territories and causing massive biodiversity loss. Whilst the fires were still burning, the Australian Government convened a biodiversity Expert Panel to guide its bushfire response. A pressing need was to target emergency investment and management to reduce the chance of extinctions and maximise the chances of longer‐term recovery. We describe the approach taken to rapidly prioritise fire‐affected animal species. We use the experience to consider the organisational and data requirements for evidence‐based responses to future ecological disasters. Location Forested biomes of subtropical and temperate Australia, with lessons for other regions. Methods We developed assessment frameworks to screen fire‐affected species based on their pre‐fire conservation status, the proportion of their distribution overlapping with fires, and their behavioural/ecological traits relating to fire vulnerability. Using formal and informal networks of scientists, government and non‐government staff and managers, we collated expert input and data from multiple sources, undertook the analyses, and completed the assessments in 3 weeks for vertebrates and 8 weeks for invertebrates. Results The assessments prioritised 92 vertebrate and 213 invertebrate species for urgent management response; another 147 invertebrate species were placed on a watchlist requiring further information. Conclusions The priority species lists helped focus government and non‐government investment, management and research effort, and communication to the public. Using multiple expert networks allowed the assessments to be completed rapidly using the best information available. However, the assessments highlighted substantial gaps in data availability and access, deficiencies in statutory threatened species listings, and the need for capacity‐building across the conservation science and management sectors. We outline a flexible template for using evidence effectively in emergency responses for future ecological disasters.
  • Item
    Thumbnail Image
    The conservation impacts of ecological disturbance: Time-bound estimates of population loss and recovery for fauna affected by the 2019-2020 Australian megafires
    Legge, S ; Rumpff, L ; Woinarski, JCZ ; Whiterod, NS ; Ward, M ; Southwell, DG ; Scheele, BC ; Nimmo, DG ; Lintermans, M ; Geyle, HM ; Garnett, ST ; Hayward-Brown, B ; Ensbey, M ; Ehmke, G ; Ahyong, ST ; Blackmore, CJ ; Bower, DS ; Brizuela-Torres, D ; Burbidge, AH ; Burns, PA ; Butler, G ; Catullo, R ; Chapple, DG ; Dickman, CR ; Doyle, KE ; Ferris, J ; Fisher, D ; Gallagher, R ; Gillespie, GR ; Greenlees, MJ ; Hohnen, R ; Hoskin, CJ ; Hunter, D ; Jolly, C ; Kennard, M ; King, A ; Kuchinke, D ; Law, B ; Lawler, I ; Lawler, S ; Loyn, R ; Lunney, D ; Lyon, J ; MacHunter, J ; Mahony, M ; Mahony, S ; McCormack, RB ; Melville, J ; Menkhorst, P ; Michael, D ; Mitchell, N ; Mulder, E ; Newell, D ; Pearce, L ; Raadik, TA ; Rowley, JJL ; Sitters, H ; Spencer, R ; Valavi, R ; West, M ; Wilkinson, DP ; Zukowski, S ; Nolan, R (WILEY, 2022-10-01)
    Aim: After environmental disasters, species with large population losses may need urgent protection to prevent extinction and support recovery. Following the 2019–2020 Australian megafires, we estimated population losses and recovery in fire-affected fauna, to inform conservation status assessments and management. Location: Temperate and subtropical Australia. Time period: 2019–2030 and beyond. Major taxa: Australian terrestrial and freshwater vertebrates; one invertebrate group. Methods: From > 1,050 fire-affected taxa, we selected 173 whose distributions substantially overlapped the fire extent. We estimated the proportion of each taxon’s distribution affected by fires, using fire severity and aquatic impact mapping, and new distribution mapping. Using expert elicitation informed by evidence of responses to previous wildfires, we estimated local population responses to fires of varying severity. We combined the spatial and elicitation data to estimate overall population loss and recovery trajectories, and thus indicate potential eligibility for listing as threatened, or uplisting, under Australian legislation. Results: We estimate that the 2019–2020 Australian megafires caused, or contributed to, population declines that make 70–82 taxa eligible for listing as threatened; and another 21–27 taxa eligible for uplisting. If so-listed, this represents a 22–26% increase in Australian statutory lists of threatened terrestrial and freshwater vertebrates and spiny crayfish, and uplisting for 8–10% of threatened taxa. Such changes would cause an abrupt worsening of underlying trajectories in vertebrates, as measured by Red List Indices. We predict that 54–88% of 173 assessed taxa will not recover to pre-fire population size within 10 years/three generations. Main conclusions: We suggest the 2019–2020 Australian megafires have worsened the conservation prospects for many species. Of the 91 taxa recommended for listing/uplisting consideration, 84 are now under formal review through national processes. Improving predictions about taxon vulnerability with empirical data on population responses, reducing the likelihood of future catastrophic events and mitigating their impacts on biodiversity, are critical.
  • Item
    Thumbnail Image
    Predicting reliability through structured expert elicitation with repliCATS (Collaborative Assessments for Trustworthy Science)
    Fraser, H ; Bush, M ; Wintle, B ; Mody, F ; Smith, ET ; Hanea, A ; Gould, E ; Hemming, V ; Hamilton, DG ; Rumpff, L ; Wilkinson, DP ; Pearson, R ; Singleton Thorn, F ; Ashton, R ; Willcox, A ; Gray, CT ; Head, A ; Ross, M ; Groenewegen, R ; Marcoci, A ; Vercammen, A ; Parker, TH ; Hoekstra, R ; Nakagawa, S ; Mandel, DR ; van Ravenzwaaij, D ; McBride, M ; Sinnott, RO ; Vesk, PA ; Burgman, M ; Fidler, F (Early Release, 2021-02-22)

    Replication is a hallmark of scientific research. As replications of individual studies are resource intensive, techniques for predicting the replicability are required. We introduce a new technique to evaluating replicability, the repliCATS (Collaborative Assessments for Trustworthy Science) process, a structured expert elicitation approach based on the IDEA protocol. The repliCATS process is delivered through an underpinning online platform and applied to the evaluation of research claims in social and behavioural sciences. This process can be deployed for both rapid assessment of small numbers of claims, and assessment of high volumes of claims over an extended period. Pilot data suggests that the accuracy of the repliCATS process meets or exceeds that of other techniques used to predict replicability. An important advantage of the repliCATS process is that it collects qualitative data that has the potential to assist with problems like understanding the limits of generalizability of scientific claims. The repliCATS process has potential applications in alternative peer review and in the allocation of effort for replication studies.

  • Item
    No Preview Available
    Fire and biodiversity in the Anthropocene
    Kelly, LT ; Giljohann, KM ; Duane, A ; Aquilue, N ; Archibald, S ; Batllori, E ; Bennett, AF ; Buckland, ST ; Canelles, Q ; Clarke, MF ; Fortin, M-J ; Hermoso, V ; Herrando, S ; Keane, RE ; Lake, FK ; McCarthy, MA ; Moran-Ordonez, A ; Parr, CL ; Pausas, JG ; Penman, TD ; Regos, A ; Rumpff, L ; Santos, JL ; Smith, AL ; Syphard, AD ; Tingley, MW ; Brotons, L (AMER ASSOC ADVANCEMENT SCIENCE, 2020-11-20)
    BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.