School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    The fuel-climate-fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change?
    McColl-Gausden, SC ; Bennett, LT ; Clarke, HG ; Ababei, DA ; Penman, TD (WILEY, 2022-09)
    Fire regimes are changing across the globe in response to complex interactions between climate, fuel, and fire across space and time. Despite these complex interactions, research into predicting fire regime change is often unidimensional, typically focusing on direct relationships between fire activity and climate, increasing the chances of erroneous fire predictions that have ignored feedbacks with, for example, fuel loads and availability. Here, we quantify the direct and indirect role of climate on fire regime change in eucalypt dominated landscapes using a novel simulation approach that uses a landscape fire modelling framework to simulate fire regimes over decades to centuries. We estimated the relative roles of climate-mediated changes as both direct effects on fire weather and indirect effects on fuel load and structure in a full factorial simulation experiment (present and future weather, present and future fuel) that included six climate ensemble members. We applied this simulation framework to predict changes in fire regimes across six temperate forested landscapes in south-eastern Australia that encompass a broad continuum from climate-limited to fuel-limited. Climate-mediated change in weather and fuel was predicted to intensify fire regimes in all six landscapes by increasing wildfire extent and intensity and decreasing fire interval, potentially led by an earlier start to the fire season. Future weather was the dominant factor influencing changes in all the tested fire regime attributes: area burnt, area burnt at high intensity, fire interval, high-intensity fire interval, and season midpoint. However, effects of future fuel acted synergistically or antagonistically with future weather depending on the landscape and the fire regime attribute. Our results suggest that fire regimes are likely to shift across temperate ecosystems in south-eastern Australia in coming decades, particularly in climate-limited systems where there is the potential for a greater availability of fuels to burn through increased aridity.
  • Item
    Thumbnail Image
    Species and Competition Interact to Influence Seasonal Stem Growth in Temperate Eucalypts
    Plumanns-Pouton, E ; Bennett, LT ; Najera-Umana, JC ; Griebel, A ; Hinko-Najera, N (MDPI, 2022-02)
    Insights on tree species and competition effects on seasonal stem growth are critical to understanding the impacts of changing climates on tree productivity, particularly for eucalypts species that occur in narrow climatic niches and have unreliable tree rings. To improve our understanding of climate effects on forest productivity, we examined the relative importance of species, competition and climate to the seasonal stem growth of co-occurring temperate eucalypts. We measured monthly stem growth of three eucalypts (Eucalyptus obliqua, E. radiata, and E. rubida) over four years in a natural mixed-species forest in south-eastern Australia, examining the relative influences of species, competition index (CI) and climate variables on the seasonal basal area increment (BAI). Seasonal BAI varied with species and CI, and was greatest in spring and/or autumn, and lowest in summer. Our study highlights the interactive effects of species and competition on the seasonal stem growth of temperate eucalypts, clearly indicating that competitive effects are strongest when conditions are favourable to growth (spring and autumn), and least pronounced in summer, when reduced BAI was associated with less rainfall. Thus, our study indicates that management to reduce inter-tree competition would have minimal influence on stem growth during less favourable (i.e., drier) periods.
  • Item
    Thumbnail Image
    Future fire regimes increase risks to obligate-seeder forests
    McColl-Gausden, SC ; Bennett, LT ; Ababei, DA ; Clarke, HG ; Penman, TD ; Archibald, SFIRE (WILEY, 2022-03)
    Abstract Aim Many species are adapted to a particular fire regime and major deviations from that regime may lead to localized extinction. Here, we quantify immaturity risks to an obligate‐seeder forest tree using an objectively designed climate model ensemble and a probabilistic fire regime simulator to predict future fire regimes. Location Alpine ash (Eucalyptus delegatensis) distribution, Victoria, south‐eastern Australia. Methods We used a fire regime model (FROST) with six climate projections from a climate model ensemble across 3.7 million hectares of native forest and non‐native vegetation to examine immaturity risks to obligate‐seeder forests dominated by alpine ash (Eucalyptus delegatensis), which has a primary juvenile period of approximately 20 years. Our models incorporated current and future projected climate including fuel feedbacks to simulate fire regimes over 100 years. We then used Random Forest modelling to evaluate which spatial characteristics of the landscape were associated with high immaturity risks to alpine ash forest patches. Results Significant shifts to the fire regime were predicted under all six future climate projections. Increases in both wildfire extent (total area burnt, area burnt at high intensity) and frequency were predicted with an average increase of up to 110 hectares burnt annually by short‐interval fires (i.e., within the expected minimum time to reproductive maturity). The immaturity risk posed by short‐interval fires to alpine ash forest patches was well explained by Random Forest models and varied with both location and environmental variables. Main conclusions Alpine ash forests are predicted to be burned at greater intensities and shorter intervals under future fire regimes. About 67% of the current alpine ash distribution was predicted to be at some level of immaturity risk over the 100‐year modelling period, with the greatest risks to those patches located on the periphery of the current distribution, closer to roads or surrounded by a drier landscape at lower elevations.
  • Item
    Thumbnail Image
    Trading Water for Carbon: Maintaining Photosynthesis at the Cost of Increased Water Loss During High Temperatures in a Temperate Forest
    Griebel, A ; Bennett, LT ; Metzen, D ; Pendall, E ; Lane, PNJ ; Arndt, SK (American Geophysical Union, 2020-01-01)
    Carbon and water fluxes are often assumed to be coupled as a result of stomatal regulation during dry conditions. However, recent observations evidenced increased transpiration rates during isolated heatwaves across a range of eucalypt species under experimental and natural conditions, with inconsistent effects on photosynthesis (ranging from increases to stark declines). To improve the empirical basis for understanding carbon and water fluxes in forests under hotter and drier climates, we measured the water use of dominant trees and ecosystem‐scale carbon and water exchange in a temperate eucalypt forest over three summer seasons. The forest maintained photosynthesis within 16% of baseline rates during hot and dry conditions, despite ~70% reductions in canopy conductance during a 5‐day heatwave. While carbon and water fluxes both decreased by 16% on exceptionally dry days, gross primary productivity only decreased by 5% during the hottest days and increased by 2% during the heatwave. However, evapotranspiration increased by 43% (hottest days) and 74% (heatwave), leading to ~40% variation in traditional water use efficiency (water use efficiency = gross primary productivity/evapotranspiration) across conditions and approximately two‐fold differences between traditional and underlying or intrinsic water use efficiency on the same days. Furthermore, the forest became a net source of carbon following a 137% increase in ecosystem respiration during the heatwave, highlighting that the potential for temperate eucalypt forests to act as net carbon sinks under hotter and drier climates will depend not only on the responses of photosynthesis to higher temperatures and changes in water availability, but also on the concomitant responses of ecosystem respiration.
  • Item
    Thumbnail Image
    Structural diversity underpins carbon storage in Australian temperate forests
    Aponte, C ; Kasel, S ; Nitschke, CR ; Tanase, MA ; Vickers, H ; Parker, L ; Fedrigo, M ; Kohout, M ; Ruiz-Benito, P ; Zavala, MA ; Bennett, LT ; Hickler, T (WILEY, 2020-05)
    Abstract Aim Forest carbon storage is the result of a multitude of interactions among biotic and abiotic factors. Our aim was to use an integrative approach to elucidate mechanistic relationships of carbon storage with biotic and abiotic factors in the natural forests of temperate Australia, a region that has been overlooked in global analyses of carbon‐biodiversity relations. Location South‐eastern Australia. Time period 2010–2015. Major taxa studied Forest trees in 732 plots. Methods We used the most comprehensive forest inventory database available for south‐eastern Australia and structural equation models to assess carbon‐storage relationships with biotic factors (species or functional diversity, community‐weighted mean (CWM) trait values, structural diversity) and abiotic factors (climate, soil, fire history). To assess the consistency of relationships at different environmental scales, our analyses involved three levels of data aggregation: six forest types, two forest groups (representing different growth environments), and all forests combined. Results Structural diversity was consistently the strongest independent predictor of carbon storage at all levels of data aggregation, whereas relationships with species‐ and functional‐diversity indices were comparatively weak. CWMs of maximum height and wood density were also significant independent predictors of carbon storage in most cases. In comparison, climate, soil, and fire history had only minor and mainly indirect effects via biotic factors on carbon storage. Main conclusions Our results indicate that carbon storage in our temperate forests was underpinned by tree structural diversity (representing efficient utilisation of space) and by CWM trait values (representing selection effects) more so than by tree species richness or functional diversity. Abiotic effects were comparatively weak and mostly indirect via biotic factors irrespective of the environmental range. Our study highlights the importance of managing forests for functionally important species and to maintain and enhance their structural complexity in order to support carbon storage.
  • Item
    Thumbnail Image
    Climate extreme variables generated using monthly time-series data improve predicted distributions of plant species
    Stewart, SB ; Elith, J ; Fedrigo, M ; Kasel, S ; Roxburgh, SH ; Bennett, LT ; Chick, M ; Fairman, T ; Leonard, S ; Kohout, M ; Cripps, JK ; Durkin, L ; Nitschke, CR (WILEY, 2021-04)
    Extreme weather can have significant impacts on plant species demography; however, most studies have focused on responses to a single or small number of extreme events. Long‐term patterns in climate extremes, and how they have shaped contemporary distributions, have rarely been considered or tested. BIOCLIM variables that are commonly used in correlative species distribution modelling studies cannot be used to quantify climate extremes, as they are generated using long‐term averages and therefore do not describe year‐to‐year, temporal variability. We evaluated the response of 37 plant species to base climate (long‐term means, equivalent to BIOCLIM variables), variability (standard deviations) and extremes of varying return intervals (defined using quantiles) based on historical observations. These variables were generated using fine‐grain (approx. 250 m), time‐series temperature and precipitation data for the hottest, coldest and driest months over 39 years. Extremes provided significant additive improvements in model performance compared to base climate alone and were more consistent than variability across all species. Models that included extremes frequently showed notably different mapped predictions relative to those using base climate alone, despite often small differences in statistical performance as measured as a summary across sites. These differences in spatial patterns were most pronounced at the predicted range margins, and reflect the influence of coastal proximity, continentality, topography and orographic barriers on climate extremes. Species occupying hotter and drier locations that are exposed to severe maximum temperature extremes were associated with better predictive performance when modelled using extremes. Understanding how plant species have historically responded to climate extremes may provide valuable insights into our understanding of contemporary distributions and help to make more accurate predictions under a changing climate.
  • Item
    Thumbnail Image
    Climate more important than soils for predicting forest biomass at the continental scale
    Bennett, AC ; Penman, TD ; Arndt, SK ; Roxburgh, SH ; Bennett, LT (WILEY, 2020)
    Above‐ground biomass in forests is critical to the global carbon cycle as it stores and sequesters carbon from the atmosphere. Climate change will disrupt the carbon cycle hence understanding how climate and other abiotic variables determine forest biomass at broad spatial scales is important for validating and constraining Earth System models and predicting the impacts of climate change on forest carbon stores. We examined the importance of climate and soil variables to explaining above‐ground biomass distribution across the Australian continent using publicly available biomass data from 3130 mature forest sites, in 6 broad ecoregions, encompassing tropical, subtropical and temperate biomes. We used the Random Forest algorithm to test the explanatory power of 14 abiotic variables (8 climate, 6 soil) and to identify the best‐performing models based on climate‐only, soil‐only and climate plus soil. The best performing models explained ~50% of the variation (climate‐only: R2 = 0.47 ± 0.04, and climate plus soils: R2 = 0.49 ± 0.04). Mean temperature of the driest quarter was the most important climate variable, and bulk density was the most important soil variable. Climate variables were consistently more important than soil variables in combined models, and model predictive performance was not substantively improved by the inclusion of soil variables. This result was also achieved when the analysis was repeated at the ecoregion scale. Predicted forest above‐ground biomass ranged from 18 to 1066 Mg ha−1, often under‐predicting measured above‐ground biomass, which ranged from 7 to 1500 Mg ha−1. This suggested that other non‐climate, non‐edaphic variables impose a substantial influence on forest above‐ground biomass, particularly in the high biomass range. We conclude that climate is a strong predictor of above‐ground biomass at broad spatial scales and across large environmental gradients, yet to predict forest above‐ground biomass distribution under future climates, other non‐climatic factors must also be identified.
  • Item
    Thumbnail Image
    High-severity wildfires in temperate Australian forests have increased in extent and aggregation in recent decades
    Tran, BN ; Tanase, MA ; Bennett, LT ; Aponte, C ; Vadrevu, KP (PUBLIC LIBRARY SCIENCE, 2020-11-18)
    Wildfires have increased in size and frequency in recent decades in many biomes, but have they also become more severe? This question remains under-examined despite fire severity being a critical aspect of fire regimes that indicates fire impacts on ecosystem attributes and associated post-fire recovery. We conducted a retrospective analysis of wildfires larger than 1000 ha in south-eastern Australia to examine the extent and spatial pattern of high-severity burned areas between 1987 and 2017. High-severity maps were generated from Landsat remote sensing imagery. Total and proportional high-severity burned area increased through time. The number of high-severity patches per year remained unchanged but variability in patch size increased, and patches became more aggregated and more irregular in shape. Our results confirm that wildfires in southern Australia have become more severe. This shift in fire regime may have critical consequences for ecosystem dynamics, as fire-adapted temperate forests are more likely to be burned at high severities relative to historical ranges, a trend that seems set to continue under projections of a hotter, drier climate in south-eastern Australia.
  • Item
    Thumbnail Image
    Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems
    Bennett, AC ; Arndt, SK ; Bennett, LT ; Knauer, J ; Beringer, J ; Griebel, A ; Hinko-Najera, N ; Liddell, MJ ; Metzen, D ; Pendall, E ; Silberstein, RP ; Wardlaw, TJ ; Woodgate, W ; Haverd, V (WILEY, 2021-10)
    Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.