School of Ecosystem and Forest Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Credible biodiversity offsetting needs public national registers to confirm no net loss
    Kujala, H ; Maron, M ; Kennedy, CM ; Evans, MC ; Bull, JW ; Wintle, BA ; Iftekhar, SM ; Selwood, KE ; Beissner, K ; Osborn, D ; Gordon, A (Elsevier BV, 2022-06-17)
  • Item
    Thumbnail Image
    The predictive performance of process-explicit range change models remains largely untested
    Uribe-Rivera, DE ; Guillera-Arroita, G ; Windecker, SM ; Pliscoff, P ; Wintle, BA (WILEY, 2022-08-18)
  • Item
    Thumbnail Image
    Eight things you should never do in a monitoring program: an Australian perspective
    Lindenmayer, DB ; Woinarski, J ; Legge, S ; Maron, M ; Garnett, ST ; Lavery, T ; Dielenberg, J ; Wintle, BA (SPRINGER, 2022-10-01)
    Monitoring is critical to gauge the effect of environmental management interventions as well as to measure the effects of human disturbances such as climate change. Recognition of the critical need for monitoring means that, at irregular intervals, recommendations are made for new government-instigated programs or to revamp existing ones. Using insights from past well-intentioned (but sadly also often failed) attempts to establish and maintain government-instigated monitoring programs in Australia, we outline eight things that should never be done in environmental monitoring programs (if they aim to be useful). These are the following: (1) Never commence a new environmental management initiative without also committing to a monitoring program. (2) Never start a monitoring program without clear questions. (3) Never implement a monitoring program without first doing a proper experimental design. (4) Never ignore the importance of matching the purpose and objectives of a monitoring program to the design of that program. (5) Never change the way you monitor something without ensuring new methods can be calibrated with the old ones. (6) Never try to monitor everything. (7) Never collect data without planning to curate and report on it. (8) If possible, avoid starting a monitoring program without the necessary resources secured. To balance our "nevers", we provide a checklist of actions that will increase the chances a monitoring program will actually measure the effectiveness of environmental management. Scientists and resource management practitioners need to be part of a stronger narrative for, and key participants in, well-designed, implemented, and maintained government-led monitoring programs. We argue that monitoring programs should be mandated in threatened species conservation programs and all new environmental management initiatives.
  • Item
    No Preview Available
    Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making
    Rounsevell, MDA ; Arneth, A ; Brown, C ; Cheung, WWL ; Gimenez, O ; Holman, I ; Leadley, P ; Lujan, C ; Mahevas, S ; Marechaux, I ; Pelissier, R ; Verburg, PH ; Vieilledent, G ; Wintle, BA ; Shin, Y-J (ELSEVIER, 2021-07-23)
  • Item
  • Item
    Thumbnail Image
    Design considerations for rapid biodiversity reconnaissance surveys and long-term monitoring to assess the impact of wildfire
    Southwell, D ; Legge, S ; Woinarski, J ; Lindenmayer, D ; Lavery, T ; Wintle, B (WILEY, 2021-10-20)
  • Item
    Thumbnail Image
    Developing a two-way learning monitoring program for Mankarr (Greater Bilby) in the Western Desert, Western Australia
    Skroblin, A ; Carboon, T ; Bidu, G ; Taylor, M ; Bidu, N ; Taylor, W ; Taylor, K ; Miller, M ; Robinson, L ; Williams, C ; Chapman, N ; Marney, M ; Marney, C ; Biljabu, J ; Biljabu, L ; Jeffries, P ; Samson, H ; Charles, P ; Game, ET ; Wintle, B (WILEY, 2022-01-01)
  • Item
    Thumbnail Image
    steps: Software for spatially and temporally explicit population simulations
    Visintin, C ; Briscoe, NJ ; Woolley, SNC ; Lentini, PE ; Tingley, R ; Wintle, BA ; Golding, N ; Graham, L (WILEY, 2020-02-25)
    Species population dynamics are driven by spatial and temporal changes in the environment, anthropogenic activities and conservation management actions. Understanding how populations will change in response to these drivers is fundamental to a wide range of ecological applications, but there are few open-source software options accessible to researchers and managers that allow them to predict these changes in a flexible and transparent way. We introduce an open-source, multi-platform r package, steps, that models spatial changes in species populations as a function of drivers of distribution and abundance, such as climate, disturbance, landscape dynamics and species ecological and physiological requirements. To illustrate the functionality of steps, we model the population dynamics of the greater glider Petauroides volans, an arboreal Australian mammal. We demonstrate how steps can be used to simulate population responses of the glider to forest dynamics and management with the types of data commonly used in ecological analyses. steps expands on the features found in existing software packages, can easily incorporate a range of spatial layers (e.g. habitat suitability, vegetation dynamics and disturbances), facilitates integrated and transparent analyses within a single platform and produces interpretable outputs of changes in species' populations through space and time. Further, steps offers both ready-to-use, built-in functionality, as well as the ability for advanced users to define their own modules for custom analyses. Thus, we anticipate that steps will be of significant value to environment and wildlife managers and researchers from a broad range of disciplines.
  • Item
    Thumbnail Image
    Equilibrium Modeling for Environmental Science: Exploring the Nexus of Economic Systems and Environmental Change
    Cantele, M ; Bal, P ; Kompas, T ; Hadjikakou, M ; Wintle, B (AMER GEOPHYSICAL UNION, 2021-09-01)
  • Item
    Thumbnail Image
    Quantifying the impact of vegetation-based metrics on species persistence when choosing offsets for habitat destruction
    Marshall, E ; Valavi, R ; Connor, LO ; Cadenhead, N ; Southwell, D ; Wintle, BA ; Kujala, H (WILEY, 2020-10-08)
    Developers are often required by law to offset environmental impacts through targeted conservation actions. Most offset policies specify metrics for calculating offset requirements, usually by assessing vegetation condition. Despite widespread use, there is little evidence to support the effectiveness of vegetation-based metrics for ensuring biodiversity persistence. We compared long-term impacts of biodiversity offsetting based on area only; vegetation condition only; area × habitat suitability; and condition × habitat suitability in development and restoration simulations for the Hunter Region of New South Wales, Australia. We simulated development and subsequent offsetting through restoration within a virtual landscape, linking simulations to population viability models for 3 species. Habitat gains did not ensure species persistence. No net loss was achieved when performance of offsetting was assessed in terms of amount of habitat restored, but not when outcomes were assessed in terms of persistence. Maintenance of persistence occurred more often when impacts were avoided, giving further support to better enforce the avoidance stage of the mitigation hierarchy. When development affected areas of high habitat quality for species, persistence could not be guaranteed. Therefore, species must be more explicitly accounted for in offsets, rather than just vegetation or habitat alone. Declines due to a failure to account directly for species population dynamics and connectivity overshadowed the benefits delivered by producing large areas of high-quality habitat. Our modeling framework showed that the benefits delivered by offsets are species specific and that simple vegetation-based metrics can give misguided impressions on how well biodiversity offsets achieve no net loss.