School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Characteristics of a multi-species conifer network of wood properties chronologies from Southern Australia
    Allen, KJ ; Nichols, SC ; Evans, R ; Baker, PJ (ELSEVIER GMBH, 2022-12)
  • Item
    Thumbnail Image
    Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
    Wilson, R ; Allen, K ; Baker, P ; Boswijk, G ; Buckley, B ; Cook, E ; D'Arrigo, R ; Druckenbrod, D ; Fowler, A ; Grandjean, M ; Krusic, P ; Palmer, J (COPERNICUS GESELLSCHAFT MBH, 2021-12-14)
    Abstract. We evaluate a range of blue intensity (BI) tree-ring parameters in eight conifer species (12 sites) from Tasmania and New Zealand for their dendroclimatic potential, and as surrogate wood anatomical proxies. Using a dataset of ca. 10–15 trees per site, we measured earlywood maximum blue intensity (EWB), latewood minimum blue intensity (LWB), and the associated delta blue intensity (DB) parameter for dendrochronological analysis. No resin extraction was performed, impacting low-frequency trends. Therefore, we focused only on the high-frequency signal by detrending all tree-ring and climate data using a 20-year cubic smoothing spline. All BI parameters express low relative variance and weak signal strength compared to ring width. Correlation analysis and principal component regression experiments identified a weak and variable climate response for most ring-width chronologies. However, for most sites, the EWB data, despite weak signal strength, expressed strong coherence with summer temperatures. Significant correlations for LWB were also noted, but the sign of the relationship for most species is opposite to that reported for all conifer species in the Northern Hemisphere. DB results were mixed but performed better for the Tasmanian sites when combined through principal component regression methods than for New Zealand. Using the full multi-species/parameter network, excellent summer temperature calibration was identified for both Tasmania and New Zealand ranging from 52 % to 78 % explained variance for split periods (1901–1950/1951–1995), with equally robust independent validation (coefficient of efficiency = 0.41 to 0.77). Comparison of the Tasmanian BI reconstruction with a quantitative wood anatomical (QWA) reconstruction shows that these parameters record essentially the same strong high-frequency summer temperature signal. Despite these excellent results, a substantial challenge exists with the capture of potential secular-scale climate trends. Although DB, band-pass, and other signal processing methods may help with this issue, substantially more experimentation is needed in conjunction with comparative analysis with ring density and QWA measurements.
  • Item
    Thumbnail Image
    A 277 year cool season dam inflow reconstruction for Tasmania, southeastern Australia
    Allen, KJ ; Nichols, SC ; Evans, R ; Allie, S ; Carson, G ; Ling, F ; Cook, ER ; Lee, G ; Baker, PJ (AMER GEOPHYSICAL UNION, 2017-01)
    Abstract Seasonal variability is a significant source of uncertainty in projected changes to precipitation across southeastern Australia (SEA). While existing instrumental records provide seasonal data for recent decades, most proxy records (e.g., tree rings, corals, speleothems) offer only annual reconstructions of hydroclimate. We present the first cool‐season (July–August) reconstruction of dam inflow (Lake Burbury) for western Tasmania in SEA based on tree‐ring width (Athrotaxis selaginoides) and mean latewood cell wall thickness (Phyllocladus aspleniifolius) chronologies. The reconstruction, produced using principal component regression, verifies back to 1731 and is moderately skillful, explaining around 23% of the variance. According to the reconstruction, relatively low inflow periods occurred around 1860, the early 1900s and 1970, while relatively high inflows occurred in the 1770s and 1810s. Highest reconstructed inflows occurred in 1816, and lowest in 1909. Comparison with available documentary and instrumental records indicates that the reconstruction better captures high rather than low flow events. There is virtually no correlation between our reconstruction and another for December–January inflow for the same catchment, a result consistent with the relationship between seasonal instrumental data. This suggests that conditions in one season have not generally reflected conditions in the other season over the instrumental record, or for the past 277 years. This illustrates the value of obtaining reconstructions of regional hydroclimatic variability for multiple individual seasons in regions where dry and wet seasons are not strongly defined. The results also indicate that the hydroclimate of the southeastern Australian region cannot be adequately represented by a single regional reconstruction.
  • Item
    Thumbnail Image
    The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia
    Cook, BI ; Palmer, JG ; Cook, ER ; Turney, CSM ; Allen, K ; Fenwick, P ; O'Donnell, A ; Lough, JM ; Grierson, PF ; Ho, M ; Baker, PJ (AMER GEOPHYSICAL UNION, 2016-11-16)
    Eastern Australia recently experienced an intense drought (Millennium Drought, 2003-2009) and record-breaking rainfall and flooding (austral summer 2010-2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December-January-February) Palmer Drought Severity Index (the Australia-New Zealand Drought Atlas; ANZDA, 1500-2012 CE), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability. This variability includes periods of multi-decadal drought in the 1500s more persistent than any event in the historical record. However, the severity of the Millennium Drought, which was caused by autumn (March-April-May) precipitation declines, may be underestimated in the ANZDA because the reconstruction is biased towards summer and antecedent spring (September-October-November) precipitation. The pluvial in 2011, however, which was characterized by extreme summer rainfall faithfully captured by the ANZDA, is likely the wettest year in the reconstruction for Coastal Queensland. Climate projections (RCP 8.5 scenario) suggest that eastern Australia will experience long-term drying during the 21st century. While the contribution of anthropogenic forcing to recent extremes remains an open question, these projections indicate an amplified risk of multi-year drought anomalies matching or exceeding the intensity of the Millennium Drought.
  • Item
    Thumbnail Image
    Compound climate extremes driving recent sub-continental tree mortality in northern Australia have no precedent in recent centuries
    Allen, KJ ; Verdon-Kidd, DC ; Sippo, JZ ; Baker, PJ (NATURE PORTFOLIO, 2021-09-15)
    Compound climate extremes (CCEs) can have significant and persistent environmental impacts on ecosystems. However, knowledge of the occurrence of CCEs beyond the past ~ 50 years, and hence their ecological impacts, is limited. Here, we place the widespread 2015-16 mangrove dieback and the more recent 2020 inland native forest dieback events in northern Australia into a longer historical context using locally relevant palaeoclimate records. Over recent centuries, multiple occurrences of analogous antecedent and coincident climate conditions associated with the mangrove dieback event were identified in this compilation. However, rising sea level-a key antecedent condition-over the three decades prior to the mangrove dieback is unprecedented in the past 220 years. Similarly, dieback in inland forests and savannas was associated with a multi-decadal wetting trend followed by the longest and most intense drought conditions of the past 250 years, coupled with rising temperatures. While many ecological communities may have experienced CCEs in past centuries, the addition of new environmental stressors associated with varying aspects of global change may exceed their thresholds of resilience. Palaeoclimate compilations provide the much-needed longer term context to better assess frequency and changes in some types of CCEs and their environmental impacts.
  • Item
    Thumbnail Image
    Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
    Freund, M ; Henley, BJ ; Karoly, DJ ; Allen, KJ ; Baker, PJ (COPERNICUS GESELLSCHAFT MBH, 2017-11-30)
    Abstract. Australian seasonal rainfall is strongly affected by large-scale ocean–atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April–September) and warm (October–March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997–2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought, 1895–1903; World War II Drought, 1939–1945; and the Millennium Drought, 1997–2005), we find that the historically documented Settlement Drought (1790–1793), Sturt's Drought (1809–1830) and the Goyder Line Drought (1861–1866) actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability by contextualising severe droughts and recent trends in Australia.
  • Item
    Thumbnail Image
    Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the Interdecadal Pacific Oscillation
    Palmer, JG ; Cook, ER ; Turney, CSM ; Allen, K ; Fenwick, P ; Cook, BI ; O'Donnell, A ; Lough, J ; Grierson, P ; Baker, P (IOP PUBLISHING LTD, 2015-12)