School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Combining optimization and simulation modelling to measure the cumulative impacts of prescribed fire and wildfire on vegetation species diversity
    Chick, MP ; York, A ; Sitters, H ; Di Stefano, J ; Nitschke, CR ; Driscoll, D (WILEY, 2019-03)
    Growth‐stage optimization (GSO) offers a new approach to biodiversity conservation in fire‐prone regions by estimating the optimal distribution of vegetation growth stages that maximize a species diversity index. This optimal growth‐stage structure provides managers an operational goal explicitly linked to a positive conservation outcome but does not define the fire regime needed to achieve it. We paired GSO with LANDIS II, a landscape succession and disturbance simulation model, to (a) estimate the optimal growth‐stage structure that maximized vegetation diversity in a south‐east Australian heathy woodland, (b) define the fire regime needed to achieve it, and (c) determine the cumulative effects of different fire‐regime scenarios on vegetation diversity over a 60‐year period. Scenarios included 0%, 2%, 5%, and 10% of the landscape burnt per year by prescribed fire only, or in combination with three alternative wildfire regimes. Furthermore, we investigated the differences in the optimal growth‐stage structure relating to above‐ground, soil seedbank, and total (above and soil seedbank) diversity datasets. The growth‐stage structure that maximized total vegetation diversity comprised approximately even proportions of all stages. In contrast, separately analysed above‐ground and soil seedbank data resulted in a greater proportion of younger and older growth‐stages, respectively. Scenarios including 5% prescribed burning per year (with and without wildfire) resulted in diversity values within 1.5% of the theoretical maximum value. Scenarios including 2% and 10% prescribed fire resulted in diversity values 8%–12% and 1.5%–5% lower than the maximum, respectively. Scenarios without prescribed fire caused diversity to fall 30%–70%. Trends across the 60 years showed that wildfire depressed diversity and subsequent prescribed fire drove recovery within 15 years. The largest threat to vegetation diversity was the absence of fire. Synthesis and applications. Combining growth‐stage optimization and simulation modelling is a powerful way of defining a conservation‐based fire management goal and identifying the prescribed fire regime needed to achieve it. We demonstrated that vegetation diversity in heathy woodland was increased by prescribed fire, with and without the cumulative effect of wildfire, and declined sharply when fire was excluded. Our method provides a flexible platform for developing long‐term fire management strategies that seek to balance human safety and biodiversity conservation. Including both plants and animals in GSO will help land managers meet the needs of multiple taxa.
  • Item
    Thumbnail Image
    Factors influencing above-ground and soil seed bank vegetation diversity at different scales in a quasi-Mediterranean ecosystem
    Chick, MP ; Nitschke, CR ; Cohn, JS ; Penman, TD ; York, A ; Tanentzap, A (WILEY, 2018-07)
    QUESTIONS: Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent? LOCATION: Heathy woodland, Otways region, Victoria, southeast Australia METHODS: We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling. RESULTS: At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors. CONCLUSIONS: Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  • Item
    Thumbnail Image
    Lack of soil seedbank change with time since fire: relevance to seed supply after prescribed burns
    Chick, MP ; Cohn, JS ; Nitschke, CR ; York, A (CSIRO PUBLISHING, 2016)
    Soil seedbanks play a key role in the post-fire recruitment of many plant species. Seedbank diversity can be influenced by spatial variability (e.g. geographic location), environmental variability (e.g. soils) and temporal disturbance heterogeneity (e.g. time since fire, TSF) across the landscape. Unlike for aboveground vegetation, relationships between these factors and soil seedbank diversity remain largely unknown. Partitioning the influence of spatial and environmental variability from that of TSF, and explaining how these factors interact with seedbank diversity, will assist conservation managers in their application of prescribed burning. We germinated soil seedbank samples from sites ranging from 1 to 75 years since fire in a heathy-woodland ecosystem across the Otway Ranges in Victoria, Australia. We also measured spatial and environmental variability across sites to partition the influence of these variables and TSF on propagules available for recruitment. We found weak positive relationships between seedbank richness and TSF; however, these relationships varied across the landscape. We found composition did not change considerably over time, suggesting, in this ecosystem, pre-fire age is not strongly influencing propagules available for recruitment post-fire. Our results suggest that spatial and environmental variability influence seedbank composition more than TSF.