School of Ecosystem and Forest Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 30
  • Item
    No Preview Available
    Warmer and drier conditions have increased the potential for large and severe fire seasons across south-eastern Australia
    Collins, L ; Clarke, H ; Clarke, MF ; McColl Gausden, SC ; Nolan, RH ; Penman, T ; Bradstock, R (WILEY, 2022-04-26)
  • Item
    Thumbnail Image
    Independent effects of drought and shade on growth, biomass allocation and leaf morphology of a flammable perennial grass Tetrarrhena juncea R.Br
    Cadiz, GO ; Cawson, JG ; Duff, TJ ; Penman, TD ; York, A ; Farrell, C (SPRINGER, 2021-06-11)
    Knowing the abundance of different plant species provides insights into the properties of vegetation communities, such as flammability. Therefore, a fundamental goal in ecology is identifying environmental conditions affecting the abundance of plant species across landscapes. Water and light are important environmental moderators of plant growth, and by extension, abundance. In the context of understanding forest flammability, the abundance of a flammable plant species in terms of its cover or biomass can shape the flammability of the whole vegetation community. We conducted a glasshouse experiment to determine the impact of drought and shade on growth, biomass allocation and leaf morphology of forest wiregrass Tetrarrhena juncea R.Br., a rhizomatous perennial grass. When it is abundant, this species is known to contribute substantially to the flammability of eucalypt forest understories (via both ignitability and combustibility). Contrasting hypotheses in the literature predict that drought can have a weaker, stronger, or independent (uncoupled) impact on plant growth when light is limiting. We used a randomized complete block design with ten treatments from the combination of two water levels (drought, well-watered) and five light levels (100%, 80%, 60%, 40%, 20%). Drought and shade were found to have independent effects on wiregrass growth, biomass allocation, and leaf morphology, supporting the uncoupled hypothesis. Growth showed greater plasticity in response to drought, while biomass allocation and leaf morphology showed greater plasticity in response to shade. Our results suggest that wiregrass is more likely to be abundant in terms of its cover and biomass when water is not limiting. Under these conditions, the increased wiregrass abundance could create a window of increased flammability for the forest ecosystem.
  • Item
    Thumbnail Image
    Determinants of growth of the flammable grass, Triodia scariosa: Consequences for fuel dynamics under climate change in the Mediterranean region of South Eastern Australia
    Gibson, RK ; Bradstock, RA ; Penman, T ; Keith, DA ; Driscoll, DA (WILEY-BLACKWELL, 2016-09-01)
    Environmental conditions may influence the presence and strength of competitive interactions between different life forms, thereby shaping community composition and structure, and corresponding fuel dynamics. Woodland and shrubland communities of the Mediterranean climate region of South Eastern Australia contain a varied mixture of herbaceous and woody plants. The ratio of herbaceous to woody plants changes along gradients of temperature, moisture and soil fertility. This study aimed to experimentally examine the relative importance of, and interactions between environmental controls (moisture and soil fertility) on the balance of dominant herbaceous (Triodia scariosa) and woody plants (e.g. Acacia ligulata and Leptospermum coriaceum) and their ultimate effects on fuel and fire regimes. The results suggest that environmental determinants of the growth of T.â scariosa are likely to be more important than interactions with shrubs in controlling the distribution of T.â scariosa. The growth of T.â scariosa was consistently higher under hot temperatures and on the less fertile yellow sands, which dominate the south of the region. The results suggest that there is strong potential for the distribution and abundance of T.â scariosa to be altered in the future with changes in temperature associated with climate change. The distribution of soil types across the Mediterranean climate region of South Eastern Australia may be predisposed to favour the southerly expansion of T.â scariosaâ dominated communities in the future under a warmer climate.
  • Item
    No Preview Available
    Fire and biodiversity in the Anthropocene
    Kelly, LT ; Giljohann, KM ; Duane, A ; Aquilue, N ; Archibald, S ; Batllori, E ; Bennett, AF ; Buckland, ST ; Canelles, Q ; Clarke, MF ; Fortin, M-J ; Hermoso, V ; Herrando, S ; Keane, RE ; Lake, FK ; McCarthy, MA ; Moran-Ordonez, A ; Parr, CL ; Pausas, JG ; Penman, TD ; Regos, A ; Rumpff, L ; Santos, JL ; Smith, AL ; Syphard, AD ; Tingley, MW ; Brotons, L (AMER ASSOC ADVANCEMENT SCIENCE, 2020-11-20)
    BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.
  • Item
    Thumbnail Image
    Future fire regimes increase risks to obligate-seeder forests
    McColl-Gausden, SC ; Bennett, LT ; Ababei, DA ; Clarke, HG ; Penman, TD ; Archibald, SFIRE (WILEY, 2021-09-23)
  • Item
    Thumbnail Image
    Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age
    Collins, L ; Bennett, AF ; Leonard, SWJ ; Penman, TD (WILEY, 2019-07-19)
    Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire-sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south-eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under 'severe' fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under 'moderate' fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole-facing aspects) and vegetation communities (i.e. closed-forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long-term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.
  • Item
    Thumbnail Image
    Aboveground forest carbon shows different responses to fire frequency in harvested and unharvested forests
    Collins, L ; Bradstock, R ; Ximenes, F ; Horsey, B ; Sawyer, R ; Penman, T (WILEY, 2019-01-01)
    Sequestration of carbon in forest ecosystems has been identified as an effective strategy to help mitigate the effects of global climate change. Prescribed burning and timber harvesting are two common, co-occurring, forest management practices that may alter forest carbon pools. Prescribed burning for forest management, such as wildfire risk reduction, may shorten inter-fire intervals and potentially reduce carbon stocks. Timber harvesting may further increase the susceptibility of forest carbon to losses in response to frequent burning regimes by redistributing carbon stocks from the live pools into the dead pools, causing mechanical damage to retained trees and shifting the demography of tree communities. We used a 27-yr experiment in a temperate eucalypt forest to examine the effect of prescribed burning frequency and timber harvesting on aboveground carbon (AGC). Total AGC was reduced by ~23% on harvested plots when fire frequency increased from zero to seven fires, but was not affected by fire frequency on unharvested plots. The reduction in total AGC associated with increasing fire frequency on harvested plots was driven by declines in large coarse woody debris (≥10 cm diameter) and large trees (≥20 cm diameter). Small tree (<20 cm DBH) AGC increased with fire frequency on harvested plots, but decreased on unharvested plots. Carbon in dead standing trees decreased with increasing fire frequency on unharvested plots, but was unaffected on harvested plots. Small coarse woody debris (<10 cm diameter) was largely unaffected by fire frequency and harvesting. Total AGC on harvested plots was between 67% and 82% of that on unharvested plots, depending on burning treatment. Our results suggest that AGC in historically harvested forests may be susceptible to declines in response to increases in prescribed burning frequency. Consideration of historic harvesting will be important in understanding the effect of prescribed burning programs on forest carbon budgets.
  • Item
    Thumbnail Image
    Factors influencing above-ground and soil seed bank vegetation diversity at different scales in a quasi-Mediterranean ecosystem
    Chick, MP ; Nitschke, CR ; Cohn, JS ; Penman, TD ; York, A ; Tanentzap, A (WILEY, 2018-07-01)
    QUESTIONS: Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent? LOCATION: Heathy woodland, Otways region, Victoria, southeast Australia METHODS: We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling. RESULTS: At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors. CONCLUSIONS: Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  • Item
    Thumbnail Image
    Changing dominance of key plant species across a Mediterranean climate region: implications for fuel types and future fire regimes
    Gibson, RK ; Bradstock, RA ; Penman, TD ; Keith, DA ; Driscoll, DA (SPRINGER, 2014-01-01)
    Herbaceous and woody plants represent different fuel types in flammable ecosystems, due to contrasting patterns of growth and flammability in response to productivity (moisture availability). However, other factors, such as soil type, fire regimes and competitive interactions may also influence the relative composition of herbaceous and woody plants within a community. The Mediterranean climate region of south eastern Australia is transitional between two contrasting fuel systems; herbaceous dominated in the dry north, versus woody plant dominated shrublands in the relatively moist south. Across the rainfall gradient of the region, there are confounded changes in dominant soil types and fire frequency. We used model-subset selection using Akaike’s Information Criterion to examine potential driving mechanisms of community compositional change from herbaceous (e.g. Triodia scariosa, Austrostipa sp.) to woody plants (e.g. Beyeria opaca, Leptospermum coriaceum, Acacia ligulata) by measuring relative cover across combinations of rainfall, time since the last fire (TSF) and soil type. We examined the relative influence of environmental versus competitive interactions on determining the cover of perennial hummock grass, T. scariosa, and co-occurring woody shrubs. Rainfall and soil types, rather than competition, were the over-arching determinants of the relative cover of grasses and shrubs. Given the sensitivity to rainfall, our results indicate there is strong potential for the nature of fuel, flammability and fire regimes to be altered in the future via climate change in this region.
  • Item
    Thumbnail Image
    Into the firing line: civilian ingress during the 2013 "Red October" bushfires, Australia
    Wilkinson, C ; Eriksen, C ; Penman, T (SPRINGER, 2016-01-01)