School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    The fuel-climate-fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change?
    McColl-Gausden, SC ; Bennett, LT ; Clarke, HG ; Ababei, DA ; Penman, TD (WILEY, 2022-09)
    Fire regimes are changing across the globe in response to complex interactions between climate, fuel, and fire across space and time. Despite these complex interactions, research into predicting fire regime change is often unidimensional, typically focusing on direct relationships between fire activity and climate, increasing the chances of erroneous fire predictions that have ignored feedbacks with, for example, fuel loads and availability. Here, we quantify the direct and indirect role of climate on fire regime change in eucalypt dominated landscapes using a novel simulation approach that uses a landscape fire modelling framework to simulate fire regimes over decades to centuries. We estimated the relative roles of climate-mediated changes as both direct effects on fire weather and indirect effects on fuel load and structure in a full factorial simulation experiment (present and future weather, present and future fuel) that included six climate ensemble members. We applied this simulation framework to predict changes in fire regimes across six temperate forested landscapes in south-eastern Australia that encompass a broad continuum from climate-limited to fuel-limited. Climate-mediated change in weather and fuel was predicted to intensify fire regimes in all six landscapes by increasing wildfire extent and intensity and decreasing fire interval, potentially led by an earlier start to the fire season. Future weather was the dominant factor influencing changes in all the tested fire regime attributes: area burnt, area burnt at high intensity, fire interval, high-intensity fire interval, and season midpoint. However, effects of future fuel acted synergistically or antagonistically with future weather depending on the landscape and the fire regime attribute. Our results suggest that fire regimes are likely to shift across temperate ecosystems in south-eastern Australia in coming decades, particularly in climate-limited systems where there is the potential for a greater availability of fuels to burn through increased aridity.
  • Item
    Thumbnail Image
    The 2019-2020 Australian forest fires are a harbinger of decreased prescribed burning effectiveness under rising extreme conditions
    Clarke, H ; Cirulis, B ; Penman, T ; Price, O ; Boer, MM ; Bradstock, R (NATURE PORTFOLIO, 2022-07-13)
    There is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019-2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions. We performed a simulation experiment to test the effects of different rates of prescribed burning treatment on risks posed by wildfire to life, property and infrastructure. In four forested case study landscapes, we found that the risks posed by wildfire were substantially higher under the fire weather conditions of the 2019-2020 season, compared to the full range of long-term historic weather conditions. For area burnt and house loss, the 2019-2020 conditions resulted in more than a doubling of residual risk across the four landscapes, regardless of treatment rate (mean increase of 230%, range 164-360%). Fire managers must prepare for a higher level of residual risk as climate change increases the likelihood of similar or even more dangerous fire seasons.
  • Item
    No Preview Available
    Warmer and drier conditions have increased the potential for large and severe fire seasons across south-eastern Australia
    Collins, L ; Clarke, H ; Clarke, MF ; McColl Gausden, SC ; Nolan, RH ; Penman, T ; Bradstock, R (WILEY, 2022-10-01)
    Aim: The aims were: (1) to identify the environmental drivers of interannual variation in wildfire extent and severity; (2) to examine temporal trends in climatic potential for large and severe wildfires; and (3) to assess whether environmental conditions experienced during the 2019–2020 mega-fire season were anomalous. Location: South-eastern Australia. Time period: 1953–2020. Major taxa studied: Temperate forests. Methods: We used satellite-derived fire severity mapping from 1988 to 2020 to model the effects of drought, weather and fuels on the annual area burned and the proportion of the area burned that was impacted by high-severity fire across four bioregions. Trends in wildfire extent and severity were then estimated from 1953 to 2020 using these derived models and gridded climate data to assess changes in climatic potential for large and severe wildfires. Estimates of wildfire extent and severity for the 2019–2020 fire season were then assessed against prior seasons (1953–2019). Results: Annual area burned was positively related to the severity of seasonal drought and frequency of fire weather conditions that promote substantial daily fire growth. Wildfire severity was elevated in years with severe fire weather and increased with increasing antecedent drought in years without severe fire weather. Fuels had a lesser effect on wildfire extent and severity than climate. Potential fire extent and severity have increased over time in response to an increased severity of drought and worsening fire weather conditions. Estimates of wildfire extent and severity during the 2019–2020 fire season approached the upper extreme within each bioregion, owing to widespread extreme climatic conditions. Main conclusions: The climatic potential for large and severe forest fires has increased across south-eastern Australia since the 1950s, probably because of anthropogenic climate change. The magnitude and severity of the 2019–2020 fires reflected climatic conditions that are driving an increase in the size and severity of wildfires.
  • Item
    Thumbnail Image
    Future fire regimes increase risks to obligate-seeder forests
    McColl-Gausden, SC ; Bennett, LT ; Ababei, DA ; Clarke, HG ; Penman, TD ; Archibald, SFIRE (WILEY, 2022-03)
    Abstract Aim Many species are adapted to a particular fire regime and major deviations from that regime may lead to localized extinction. Here, we quantify immaturity risks to an obligate‐seeder forest tree using an objectively designed climate model ensemble and a probabilistic fire regime simulator to predict future fire regimes. Location Alpine ash (Eucalyptus delegatensis) distribution, Victoria, south‐eastern Australia. Methods We used a fire regime model (FROST) with six climate projections from a climate model ensemble across 3.7 million hectares of native forest and non‐native vegetation to examine immaturity risks to obligate‐seeder forests dominated by alpine ash (Eucalyptus delegatensis), which has a primary juvenile period of approximately 20 years. Our models incorporated current and future projected climate including fuel feedbacks to simulate fire regimes over 100 years. We then used Random Forest modelling to evaluate which spatial characteristics of the landscape were associated with high immaturity risks to alpine ash forest patches. Results Significant shifts to the fire regime were predicted under all six future climate projections. Increases in both wildfire extent (total area burnt, area burnt at high intensity) and frequency were predicted with an average increase of up to 110 hectares burnt annually by short‐interval fires (i.e., within the expected minimum time to reproductive maturity). The immaturity risk posed by short‐interval fires to alpine ash forest patches was well explained by Random Forest models and varied with both location and environmental variables. Main conclusions Alpine ash forests are predicted to be burned at greater intensities and shorter intervals under future fire regimes. About 67% of the current alpine ash distribution was predicted to be at some level of immaturity risk over the 100‐year modelling period, with the greatest risks to those patches located on the periphery of the current distribution, closer to roads or surrounded by a drier landscape at lower elevations.
  • Item
    No Preview Available
    The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire
    Collins, L ; Bradstock, RA ; Clarke, H ; Clarke, MF ; Nolan, RH ; Penman, TD (IOP Publishing Ltd, 2021-04)
    Abstract Extreme fire seasons characterised by very large ‘mega-fires’ have demonstrably increased area burnt across forested regions globally. However, the effect of extreme fire seasons on fire severity, a measure of fire impacts on ecosystems, remains unclear. Very large wildfires burnt an unprecedented area of temperate forest, woodland and shrubland across south-eastern Australia in 2019/2020, providing an opportunity to examine the impact of extreme fires on fire severity patterns. We developed an atlas of wildfire severity across south-eastern Australia between 1988 and 2020 to test (a) whether the 2019/2020 fire season was more severe than previous fire seasons, and (b) if the proportion of high-severity fire within the burn extent (HSp) increases with wildfire size and annual area burnt. We demonstrate that the 2019/2020 wildfires in south-eastern Australia were generally greater in extent but not proportionally more severe than previous fires, owing to constant scaling between HSp and annual fire extent across the dominant dry-forest communities. However, HSp did increase with increasing annual fire extent across wet-forests and the less-common rainforest and woodland communities. The absolute area of high-severity fire in 2019/2020 (∼1.8 M ha) was larger than previously seen, accounting for ∼44% of the area burnt by high-severity fire over the past 33 years. Our results demonstrate that extreme fire seasons are a rare but defining feature of fire regimes across forested regions, owing to the disproportionate influence of mega-fires on area burnt.
  • Item
    Thumbnail Image
    Cost-Effective Prescribed Burning Solutions Vary Between Landscapes in Eastern Australia
    Penman, TD ; Clarke, H ; Cirulis, B ; Boer, MM ; Price, OF ; Bradstock, RA (FRONTIERS MEDIA SA, 2020-07-10)
  • Item
    Thumbnail Image
    The Proximal Drivers of Large Fires: A Pyrogeographic Study
    Clarke, H ; Penman, T ; Boer, M ; Cary, GJ ; Fontaine, JB ; Price, O ; Bradstock, R (FRONTIERS MEDIA SA, 2020-04-03)