School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Leaf traits predict global patterns in the structure and flammability of forest litter beds
    Burton, JE ; Cawson, JG ; Filkov, A ; Penman, TD ; Cornelissen, H (WILEY, 2021-03)
    Fallen plant material such as leaves, needles and branches form litter beds which strongly influence fire ignition and spread. Traits of the dominant species influence litter flammability directly by determining how individual leaves burn and indirectly through the structure of the litter bed. However, we are yet to determine the relative importance of these different drivers across a range of plant species from different biomes. We undertook a meta‐analysis, combining leaf trait, litter structure and flammability data for 106 species from North America, South America, Europe, Asia and Australia. The dataset encompassed broad‐leaved and coniferous species from seven different experimental studies. Relationships between leaf traits, litter structure and key flammability metrics—sustainability, combustibility and consumability—were analysed using bivariate and piecewise structural equation modelling (SEM). Traits which characterise the three‐dimensional nature of the leaf and how much space a leaf occupies showed much stronger associations to litter structure and flammability than other morphological traits. Leaf curl, surface area to volume ratio (SAV) and SLA predominately influence litter flammability indirectly via litter structure with SLA being the only leaf trait which had a negative direct effect on flame duration. Packing ratio and bulk density were influenced by different combinations of leaf traits and, in turn, they aligned with different flammability metrics. Bulk density predicted flame spread rate and flame duration whereas packing ratio predicted consumption. Synthesis. We identified key leaf and litter traits which influence different components of litter bed flammability. Importantly, we show that the effects of these leaf and litter traits are consistent across a wide range of taxa and biomes. Our study represents a significant step towards developing trait‐based models for predicting surface wildfire behaviour. Such models will more flexibly accommodate future shifts in the composition of plant species triggered by altered fire regimes and climate change.
  • Item
    Thumbnail Image
    Quantifying merging fire behaviour phenomena using unmanned aerial vehicle technology
    Filkov, A ; Cirulis, B ; Penman, T (CSIRO PUBLISHING, 2020-12-10)
    Catastrophic wildfires are often a result of dynamic fire behaviours. They can cause rapid escalation of fire behaviour, increasing the danger to ground-based emergency personnel. To date, few studies have characterised merging fire behaviours outside the laboratory. The aim of this study was to develop a simple, fast and accurate method to track fire front propagation using emerging technologies to quantify merging fire behaviour at the field scale. Medium-scale field experiments were conducted during April 2019 on harvested wheat fields in western Victoria, Australia. An unmanned aerial vehicle was used to capture high-definition video imagery of fire propagation. Twenty-one junction and five inward parallel fire fronts were identified during the experiments. The rate of spread (ROS) of junction fire fronts was found to be at least 60% higher than head fire fronts. Thirty-eight per cent of junction fire fronts had increased ROS at the final stage of the merging process. Furthermore, the angle between two junction fire fronts did not change significantly in time for initial angles of 4–14°. All these results contrast with previous published work. Further investigation is required to explain the results as the relationship between fuel load, wind speed and scale is not known.
  • Item
    Thumbnail Image
    Frequency of Dynamic Fire Behaviours in Australian Forest Environments
    Filkov, A ; Duff, TJ ; Penman, TD (MDPI, 2020-03)
    Wildfires can result in significant social, environmental and economic losses. Fires in which dynamic fire behaviours (DFBs) occur contribute disproportionately to damage statistics. Little quantitative data on the frequency at which DFBs occur exists. To address this problem, we conducted a structured survey using staff from fire and land management agencies in Australia regarding their experiences with DFBs. Staff were asked which, if any, DFBs were observed within fires greater than 1000 ha from the period 2006–2016 that they had experience with. They were also asked about the nature of evidence to support these observations. One hundred thirteen fires were identified. Eighty of them had between one and seven DFBs with 73% (58 fires) having multiple types of DFBs. Most DFBs could commonly be identified through direct data, suggesting an empirical analysis of these phenomena should be possible. Spotting, crown fires and pyro-convective events were the most common DFBs (66%); when combined with eruptive fires and conflagrations, these DFBs comprise 89% of all cases with DFBs. Further research should be focused on these DFBs due to their high frequencies and the fact that quantitative data are likely to be available.