School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Using Bayesian multitemporal classification to monitor tropical forest cover changes in Kalimantan, Indonesia
    Sari, IL ; Weston, CJ ; Newnham, GJ ; Volkova, L (TAYLOR & FRANCIS LTD, 2022-12-31)
    Significant areas of native forest in Kalimantan, on the island of Borneo, have been cleared for the expansion of plantations of oil palm and rubber. In this study multisource remote sensing was used to develop a time series of land cover maps that distinguish native forest from plantations. Using a study area in east Kalimantan, Landsat images were combined with either ALOS PALSAR or Sentinel-1 images to map four land cover classes (native forest, oil palm plantation, rubber plantation, non-forest). Bayesian multitemporal classification was applied to increase map accuracy and maps were validated using a confusion matrix; final map overall accuracy was >90%. Over 18 years from 2000 to 2018 nearly half the native forests in the study area were converted to either non-forest or plantations of either rubber or oil palm, with the highest losses between 2015 and 2016. Trending upwards from 2008 large areas of degraded or cleared forests, mapped as non-forest, were converted to oil palm plantation. Conversion of native forests to plantation mainly occurred in lowland and wetland forest, while significant forest regrowth was detected in degraded peatland. These maps will help Indonesia with strategies and policies for balancing economic growth and conservation.
  • Item
    Thumbnail Image
    Developing Multi-Source Indices to Discriminate between Native Tropical Forests, Oil Palm and Rubber Plantations in Indonesia
    Sari, IL ; Weston, CJ ; Newnham, GJ ; Volkova, L (MDPI, 2022-01)
    Over the last 18 years, Indonesia has experienced significant deforestation due to the expansion of oil palm and rubber plantations. Accurate land cover maps are essential for policymakers to track and manage land change to support sustainable forest management and investment decisions. An automatic digital processing (ADP) method is currently used to develop land cover change maps for Indonesia, based on optical imaging (Landsat). Such maps produce only forest and non-forest classes, and often oil palm and rubber plantations are misclassified as native forests. To improve accuracy of these land cover maps, this study developed oil palm and rubber plantation discrimination indices using the integration of Landsat-8 and synthetic aperture radar Sentinel-1 images. Sentinel-1 VH and VV difference (>7.5 dB) and VH backscatter intensity were used to discriminate oil palm plantations. A combination of Landsat-8 NDVI, NDMI with Sentinel-1 VV and VH were used to discriminate rubber plantations. The improved map produced four land cover classes: native forest, oil palm plantation, rubber plantation, and non-forest. High-resolution SPOT 6/7 imagery and ground truth data were used for validation of the new classified maps. The map had an overall accuracy of 92%; producer’s accuracy for all classes was higher than 90%, except for rubber (65%), and user’s accuracy was over 80% for all classes. These results demonstrate that indices developed from a combination of optical and radar images can improve our ability to discriminate between native forest and oil palm and rubber plantations in the tropics. The new mapping method will help to support Indonesia’s national forest monitoring system and inform monitoring of plantation expansion.
  • Item
    Thumbnail Image
    Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia
    Sari, IL ; Weston, CJ ; Newnham, GJ ; Volkova, L (MDPI AG, 2021-04-08)
    This study assessed the accuracy of land cover change (2000–2018) maps compiled from Landsat images with either automated digital processing or with visual interpretation for a tropical forest area in Indonesia. The accuracy assessment used a two-stage stratified random sampling involving a confusion matrix for assessing map accuracy and by estimating areas of land cover change classes and associated uncertainty. The reference data were high-resolution images from SPOT 6/7 and high-resolution images finer than 5 m obtained from Open Foris Collect Earth. Results showed that the map derived from automated digital processing had lower accuracy (overall accuracy 73–77%) compared to the map based on visual interpretation (overall accuracy 80–84%). The automated digital processing map error was in differentiating between native forest and plantation areas. While the visual interpretation map had a higher accuracy, it did not consistently differentiate between native forest and shrub areas. Future improvement of the digital map requires more accurate differentiation between forest and plantation to better support national forest monitoring systems for sustainable forest management.