School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate
    Shi, X ; Hu, H-W ; Zhu-Barker, X ; Hayden, H ; Wang, J ; Suter, H ; Chen, D ; He, J-Z (WILEY, 2017-12)
    Soil ecosystem represents the largest contributor to global nitrous oxide (N2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the 15 N-18 O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N2 O production from nitrifier-induced denitrification, a potential significant source of N2 O production in agricultural soils.
  • Item
    Thumbnail Image
    Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils
    Zhang, Y-J ; Hu, H-W ; Yan, H ; Wang, J-T ; Lam, SK ; Chen, Q-L ; Chen, D ; He, J-Z (Elsevier, 2019-06-10)
    Growing evidence points to the pivotal role of the environmental factors in influencing the transmission of antibiotic resistance genes (ARGs) and the propagation of resistant human pathogens. However, our understanding of the ecological and evolutionary environmental factors that contribute to development and dissemination of antibiotic resistance is lacking. Here, we profiled a wide variety of ARGs using the high-throughput quantitative PCR analysis in 61 soil samples collected from ocean and river beaches, which are hotspots for human activities and platforms for potential transmission of environmental ARGs to human pathogens. We identified the dominant abiotic and biotic factors influencing the diversity, abundance and composition of ARGs in these ecosystems. A total of 110 ARGs conferring resistance to eight major categories of antibiotics were detected. The core resistome was mainly affiliated into β-lactam and multidrug resistance, accounting for 66.9% of the total abundance of ARGs. The oprJ gene conferring resistance to multidrug was the most widespread ARG subtype detected in all the samples. The relative abundances of total ARGs and core resistome were significantly correlated with salinity-related properties including electrical conductivity and concentrations of sodium and chloride. Random forest analysis and structural equation modelling revealed that salinity was the most important factor modulating the distribution patterns of beach soil ARGs after accounting for multiple drivers. These findings suggest that beach soil is a rich reservoir of ARGs and that salinity is a predominant factor shaping the distribution patterns of soil resistome.
  • Item
    No Preview Available
    Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils
    Hu, H-W ; Wang, J-T ; Li, J ; Shi, X-Z ; Ma, Y-B ; Chen, D ; He, J-Z (AMER CHEMICAL SOC, 2017-01-17)
    Heavy metal contamination is assumed to be a selection pressure on antibiotic resistance, but to our knowledge, evidence of the heavy metal-induced changes of antibiotic resistance is lacking on a long-term basis. Using quantitative PCR array and Illumina sequencing, we investigated the changes of a wide spectrum of soil antibiotic resistance genes (ARGs) following 4-5 year nickel exposure (0-800 mg kg-1) in two long-term experimental sites. A total of 149 unique ARGs were detected, with multidrug and β-lactam resistance as the most prevailing ARG types. The frequencies and abundance of ARGs tended to increase along the gradient of increasing nickel concentrations, with the highest values recorded in the treatments amended with 400 mg nickel kg-1 soil. The abundance of mobile genetic elements (MGEs) was significantly associated with ARGs, suggesting that nickel exposure might enhance the potential for horizontal transfer of ARGs. Network analysis demonstrated significant associations between ARGs and MGEs, with the integrase intI1 gene having the most frequent interactions with other co-occurring ARGs. The changes of ARGs were mainly driven by nickel bioavailability and MGEs as revealed by structural equation models. Taken together, long-term nickel exposure significantly increased the diversity, abundance, and horizontal transfer potential of soil ARGs.
  • Item
    No Preview Available
    Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes
    Zhang, Y-J ; Hu, H-W ; Chen, Q-L ; Singh, BK ; Yan, H ; Chen, D ; He, J-Z (PERGAMON-ELSEVIER SCIENCE LTD, 2019-09)
    The increasing antimicrobial resistance in manure-amended soil can potentially enter food chain, representing an important vehicle for antibiotic resistance genes (ARGs) transmission into human microbiome. However, the pathways for transmission of ARGs from soil to plant remain unclear. Here, we explored the impacts of poultry and cattle manure application on the patterns of resistome in soil and lettuce microbiome including rhizosphere, root endosphere, leaf endosphere and phyllosphere, to identify the potential transmission routes of ARGs in the soil-plant system. After 90 days of cultivation, a total of 144 ARGs were detected in all samples using high-throughput quantitative PCR. Rhizosphere soil samples harbored the most diverse ARGs compared with other components of lettuce. Cattle manure application increased the abundance of ARGs in root endophyte, while poultry manure application increased ARGs in rhizosphere, root endophyte and phyllosphere, suggesting that poultry manure may have a stronger impact on lettuce resistomes. The ARG profiles were significantly correlated with the bacterial community, and the enrichment of soil and plant resistomes was strongly affected by the bacterial taxa including Solibacteres, Chloroflexi, Acidobacteria, Gemm-1 and Gemmatimonadetes, as revealed by the network analyses. Moreover, the overlaps of ARGs between lettuce tissues and soil were identified, which indicated that plant and environmental resistomes are interconnected. Our findings provide insights into the transmission routes of ARGs from manured soil to vegetables, and highlight the potential risks of plant resistome migration to the human food chain.
  • Item
  • Item
    Thumbnail Image
    The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil
    Liu, R ; Hayden, HL ; Suter, H ; Hu, H ; Lam, SK ; He, J ; Mele, PM ; Chen, D (SPRINGER, 2017-01)
    In recent years, identification of the microbial sources responsible for soil N₂O production has substantially advanced with the development of isotope enrichment techniques, selective inhibitors, mathematical models and the discoveries of specific N-cycling functional genes. However, little information is available to effectively quantify the N₂O produced from different microbial pathways (e.g. nitrification and denitrification). Here, a ¹⁵N-tracing incubation experiment was conducted under controlled laboratory conditions (50, 70 and 85% water-filled pore space (WFPS) at 25 and 35 °C). Nitrification was the main contributor to N₂O production. At 50, 70 and 85% WFPS, nitrification contributed 87, 80 and 53% of total N₂O production, respectively, at 25 °C, and 86, 74 and 33% at 35 °C. The proportion of nitrified N as N₂O (P N₂O) increased with temperature and moisture, except for 85% WFPS, when P N₂O was lower at 35 °C than at 25 °C. Ammonia-oxidizing archaea (AOA) were the dominant ammonia oxidizers, but both AOA and ammonia-oxidizing bacteria (AOB) were related to N₂O emitted from nitrification. AOA and AOB abundance was significantly influenced by soil moisture, more so than temperature, and decreased with increasing moisture content. These findings can be used to develop better models for simulating N₂O from nitrification to inform soil management practises for improving N use efficiency.
  • Item
    Thumbnail Image
    Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers
    Li, C ; Hu, H-W ; Chen, Q-L ; Chen, D ; He, J-Z (PERGAMON-ELSEVIER SCIENCE LTD, 2019-11)
    The recent discovery of complete ammonia oxidizers (comammox Nitrospira) challenged the paradigm of the two-step nitrification mediated by two distinct groups of nitrifiers, and raised fundamental questions regarding their niche specialization and relative contribution to nitrification in agricultural soils. Previous studies suggest that comammox Nitrospira have an oligotrophic lifestyle and would outcompete canonical ammonia oxidizers (ammonia-oxidizing bacteria and ammonia-oxidizing archaea) under ammonia-limited conditions. Here, we demonstrated that comammox Nitrospira clade A were significantly more abundant than canonical ammonia oxidizers and 13CO2-DNA-stable isotope probing revealed that comammox Nitrospira clade A incorporated 13CO2 into their genomes in fertilized agricultural soils during the microcosm incubation. Phylogenetic analysis of the amoA gene revealed that 13CO2-labelled comammox Nitrospira clade A belonged to the Nitrospira inopinata-related cluster and a new cluster that was distinct from the known comammox isolates. These results demonstrated the potential important role of comammox Nitrospira in autotrophic ammonia oxidation in agricultural soils amended with nitrogen fertilizers and their lifestyle may be not strictly restricted to oligotrophic habitats. There is a potential contribution of comammox Nitrospira to soil nitrification, which calls re-evaluation of the microbial nitrogen cycling processes and the subsequent impacts on agriculture and the environment.
  • Item
    Thumbnail Image
    Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics
    Zhang, Y-J ; Hu, H-W ; Gou, M ; Wang, J-T ; Chen, D ; He, J-Z (ELSEVIER SCI LTD, 2017-12)
    Land application of animal manure is a common agricultural practice potentially leading to dispersal and propagation of antibiotic resistance genes (ARGs) in environmental settings. However, the fate of resistome in agro-ecosystems over time following application of different manure sources has never been compared systematically. Here, soil microcosm incubation was conducted to compare effects of poultry, cattle and swine manures spiked with or without the antibiotic tylosin on the temporal changes of soil ARGs. The high-throughput quantitative PCR detected a total of 185 unique ARGs, with Macrolide-Lincosamide-Streptogramin B resistance as the most frequently encountered ARG type. The diversity and abundance of ARGs significantly increased following application of manure and manure spiked with tylosin, with more pronounced effects observed in the swine and poultry manure treatments than in the cattle manure treatment. The level of antibiotic resistance gradually decreased over time in all manured soils but was still significantly higher in the soils treated with swine and poultry manures than in the untreated soils after 130 days' incubation. Tylosin-amended soils consistently showed higher abundances of ARGs than soils treated with manure only, suggesting a strong selection pressure of antibiotic-spiked manure on soil ARGs. The relative abundance of ARGs had significantly positive correlations with integrase and transposase genes, indicative of horizontal transfer potential of ARGs in manure and tylosin treated soils. Our findings provide evidence that application of swine and poultry manures might enrich more soil ARGs than cattle manure, which necessitates the appropriate treatment of raw animal manures prior to land application to minimise the spread of environmental ARGs.
  • Item
    Thumbnail Image
    Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions
    Liu, R ; Hayden, HL ; Hu, H ; He, J ; Suter, H ; Chen, D (ELSEVIER, 2017-10)
    Acetylene (C2H2) is an effective nitrification inhibitor targeting autotrophic ammonia oxidizers, and has shown promise for improving nitrogen use efficiency by mitigating greenhouse gas nitrous oxide (N2O) emissions and reducing nitrate leaching. Its efficacy, however, varies considerably with edaphic and environmental conditions and remains largely less studied in dryland agricultural soils. Here we conducted two laboratory microcosm incubations to explore the efficacy of C2H2 across various agricultural soils and under different conditions. The first incubation was with four agricultural soils at 25°C and 60% water-filled pore space (WFPS), and the second incubation included one cropping soil under a range of conditions (15°C, 25°C, 35°C and 50%, 70% WFPS). Our results showed that incubation of soil with 1% v/v C2H2 resulted in complete or partial inhibition of nitrification, N2O emission, and AOA or AOB growth under the experimental conditions. Acetylene can totally inhibit nitrification in acidic cropping and dairy pasture soils through retarding both AOA and AOB growth, while C2H2 partly inhibited nitrification and N2O emission in the alkaline vegetable soil through impeding only AOB growth. The highest inhibition effect of C2H2 was achieved at 25°C and 50% WFPS, while there was no inhibitory effect of C2H2 when soil was incubated at 15°C and 50% WFPS suggesting soil temperature may have a significant influence on C2H2 effectiveness. The inhibition of C2H2 on cumulative N2O emission increased with increasing temperature at 50% WFPS. In contrast, at 70% WFPS, the inhibition of C2H2 on cumulative N2O emission decreased with increasing temperature. Since the effect of C2H2 varied with soils and environmental conditions, this highlights the assumption that N2O production and nitrification can be affected by low concentrations of C2H2 may be not appropriate in some occasions.