School of Botany - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages
    Pollock, LJ ; Rosauer, DF ; Thornhill, AH ; Kujala, H ; Crisp, MD ; Miller, JT ; McCarthy, MA (ROYAL SOC, 2015-02-19)
    Evolutionary and genetic knowledge is increasingly being valued in conservation theory, but is rarely considered in conservation planning and policy. Here, we integrate phylogenetic diversity (PD) with spatial reserve prioritization to evaluate how well the existing reserve system in Victoria, Australia captures the evolutionary lineages of eucalypts, which dominate forest canopies across the state. Forty-three per cent of remaining native woody vegetation in Victoria is located in protected areas (mostly national parks) representing 48% of the extant PD found in the state. A modest expansion in protected areas of 5% (less than 1% of the state area) would increase protected PD by 33% over current levels. In a recent policy change, portions of the national parks were opened for development. These tourism development zones hold over half the PD found in national parks with some species and clades falling entirely outside of protected zones within the national parks. This approach of using PD in spatial prioritization could be extended to any clade or area that has spatial and phylogenetic data. Our results demonstrate the relevance of PD to regional conservation policy by highlighting that small but strategically located areas disproportionally impact the preservation of evolutionary lineages.
  • Item
    Thumbnail Image
    Understanding co-occurrence bymodelling species simultaneously with a Joint Species DistributionModel (JSDM)
    Pollock, LJ ; Tingley, R ; Morris, WK ; Golding, N ; O'Hara, RB ; Parris, KM ; Vesk, PA ; McCarthy, MA ; McPherson, J (WILEY, 2014-05)
    Summary A primary goal of ecology is to understand the fundamental processes underlying the geographic distributions of species. Two major strands of ecology – habitat modelling and community ecology – approach this problem differently. Habitat modellers often use species distribution models (SDMs) to quantify the relationship between species’ and their environments without considering potential biotic interactions. Community ecologists, on the other hand, tend to focus on biotic interactions and, in observational studies, use co‐occurrence patterns to identify ecological processes. Here, we describe a joint species distribution model (JSDM) that integrates these distinct observational approaches by incorporating species co‐occurrence data into a SDM. JSDMs estimate distributions of multiple species simultaneously and allow decomposition of species co‐occurrence patterns into components describing shared environmental responses and residual patterns of co‐occurrence. We provide a general description of the model, a tutorial and code for fitting the model in R. We demonstrate this modelling approach using two case studies: frogs and eucalypt trees in Victoria, Australia. Overall, shared environmental correlations were stronger than residual correlations for both frogs and eucalypts, but there were cases of strong residual correlation. Frog species generally had positive residual correlations, possibly due to the fact these species occurred in similar habitats that were not fully described by the environmental variables included in the JSDM. Eucalypt species that interbreed had similar environmental responses but had negative residual co‐occurrence. One explanation is that interbreeding species may not form stable assemblages despite having similar environmental affinities. Environmental and residual correlations estimated from JSDMs can help indicate whether co‐occurrence is driven by shared environmental responses or other ecological or evolutionary process (e.g. biotic interactions), or if important predictor variables are missing. JSDMs take into account the fact that distributions of species might be related to each other and thus overcome a major limitation of modelling species distributions independently.