School of Botany - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Characterization of Two Malaria Parasite Organelle Translation Elongation Factor G Proteins: The Likely Targets of the Anti-Malarial Fusidic Acid
    Johnson, RA ; McFadden, GI ; Goodman, CD ; Langsley, G (PUBLIC LIBRARY SCIENCE, 2011-06-10)
    Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.
  • Item
    Thumbnail Image
    Identification of Plant-like Galactolipids in Chromera velia, a Photosynthetic Relative of Malaria Parasites
    Botte, CY ; Yamaryo-Botte, Y ; Janouskovec, J ; Rupasinghe, T ; Keeling, PJ ; Crellin, P ; Coppel, RL ; Marechal, E ; McConville, MJ ; McFadden, GI (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-08-26)
    Apicomplexa are protist parasites that include Plasmodium spp., the causative agents of malaria, and Toxoplasma gondii, responsible for toxoplasmosis. Most Apicomplexa possess a relict plastid, the apicoplast, which was acquired by secondary endosymbiosis of a red alga. Despite being nonphotosynthetic, the apicoplast is otherwise metabolically similar to algal and plant plastids and is essential for parasite survival. Previous studies of Toxoplasma gondii identified membrane lipids with some structural features of plastid galactolipids, the major plastid lipid class. However, direct evidence for the plant-like enzymes responsible for galactolipid synthesis in Apicomplexan parasites has not been obtained. Chromera velia is an Apicomplexan relative recently discovered in Australian corals. C. velia retains a photosynthetic plastid, providing a unique model to study the evolution of the apicoplast. Here, we report the unambiguous presence of plant-like monogalactosyldiacylglycerol and digalactosyldiacylglycerol in C. velia and localize digalactosyldiacylglycerol to the plastid. We also provide evidence for a plant-like biosynthesis pathway and identify candidate galactosyltranferases responsible for galactolipid synthesis. Our study provides new insights in the evolution of these important enzymes in plastid-containing eukaryotes and will help reconstruct the evolution of glycerolipid metabolism in important parasites such as Plasmodium and Toxoplasma.