School of Geography, Earth and Atmospheric Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Studying climate stabilization at Paris Agreement levels
    King, AD ; Sniderman, JMK ; Dittus, AJ ; Brown, JR ; Hawkins, E ; Ziehn, T (NATURE PORTFOLIO, 2021-12)
  • Item
    Thumbnail Image
    Transient and Quasi-Equilibrium Climate States at 1.5°C and 2°C Global Warming
    King, AD ; Borowiak, AR ; Brown, JR ; Frame, DJ ; Harrington, LJ ; Min, S-K ; Pendergrass, A ; Rugenstein, M ; Sniderman, JMK ; Stone, DA (AMER GEOPHYSICAL UNION, 2021-11)
    Abstract Recent climate change is characterized by rapid global warming, but the goal of the Paris Agreement is to achieve a stable climate where global temperatures remain well below 2°C above pre‐industrial levels. Inferences about conditions at or below 2°C are usually made based on transient climate projections. To better understand climate change impacts on natural and human systems under the Paris Agreement, we must understand how a stable climate may differ from transient conditions at the same warming level. Here we examine differences between transient and quasi‐equilibrium climates using a statistical framework applied to greenhouse gas‐only model simulations. This allows us to infer climate change patterns at 1.5°C and 2°C global warming in both transient and quasi‐equilibrium climate states. We find substantial local differences between seasonal‐average temperatures dependent on the rate of global warming, with mid‐latitude land regions in boreal summer considerably warmer in a transient climate than a quasi‐equilibrium state at both 1.5°C and 2°C global warming. In a rapidly warming world, such locations may experience a temporary emergence of a local climate change signal that weakens if the global climate stabilizes and the Paris Agreement goals are met. Our research demonstrates that the rate of global warming must be considered in regional projections.
  • Item
    Thumbnail Image
    Influence of the 2015-2016 El Niño on the record-breaking mangrove dieback along northern Australia coast.
    Abhik, S ; Hope, P ; Hendon, HH ; Hutley, LB ; Johnson, S ; Drosdowsky, W ; Brown, JR ; Duke, NC (Springer Science and Business Media LLC, 2021-10-14)
    This study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Using satellite-derived fractional canopy cover (FCC), variation of the mangrove canopies during recent decades are studied, including a severe dieback during 2015-2016. The relationship between mangrove FCC and climate conditions is examined with a focus on the possible role of the 2015-2016 El Niño in altering favorable conditions sustaining the mangroves. The mangrove FCC is shown to be coherent with the low-frequency component of sea level height (SLH) variation related to the El Niño Southern Oscillation (ENSO) cycle in the equatorial Pacific. The SLH drop associated with the 2015-2016 El Niño is identified to be the crucial factor leading to the dieback event. A stronger SLH drop occurred during austral autumn and winter, when the SLH anomalies were about 12% stronger than the previous very strong El Niño events. The persistent SLH drop occurred in the dry season of the year when SLH was seasonally at its lowest, so potentially exposed the mangroves to unprecedented hostile conditions. The influence of other key climate factors is also discussed, and a multiple linear regression model is developed to understand the combined role of the important climate variables on the mangrove FCC variation.