School of Geography, Earth and Atmospheric Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Ground Penetrating Radar of Neotectonic Folds and Faults in South-Central Australia: Evolution of the Shallow Geophysical Structure of Fault-Propagation Folds with Increasing Strain
    Sellmann, S ; Quigley, M ; Duffy, B ; Moffat, I (MDPI, 2022-11)
    Using ground penetrating radar (GPR) we investigate the near surface (~0–10 m depth) geophysical structure of neotectonic fault-propagation folds and thrust faults in south-central Australia in varying stages of fold and fault growth. Variations in neotectonic fold scarp heights are interpreted to reflect variations in accumulated slip on the underlying reverse faults. Fold scarps on the Nullarbor and Roe Plains are characterized by broad, asymmetric morphologies with vertical displacements of ~5 to ~40 m distributed over 1 to 2 km widths (~0.5 to ~4 m per 100 m). Within increasing scarp height there is an increase in the frequency and spatial density of strong reflector packages in the hanging wall that are attributed to material contrasts imposed by co-seismic fracturing and associated lithological and weathering variations. No evidence for discrete faulting is found at scarp heights up to 40 m (maximum relief of 4 m per 100 m). Where the principal slip zone of a fault ruptures to the surface, scarp morphologies are characterized by steep gradients (ca. 10 m per 100 m). Discrete faulting is imaged in GPR as structural lineaments, abrupt changes in the thickness of reflector packages with variations of amplitude, and/or hyperbolic diffraction packages indicative of the disturbance of reflector packages. Geophysical imaging of subtle changes in the shallow geological structure during growth of fault-propagation folds can be conducted using GPR informing the identification of locations for invasive investigations (e.g., trenching).
  • Item
    No Preview Available
    Tectono-Thermal Evolution of the Hope-Kelly Fault System, Southern Alps, New Zealand: Insights From Topographic Analysis and (U-Th)/He Thermochronology
    Vermeer, JLL ; Quigley, MCC ; Boone, SCC ; Duffy, BGG ; Langridge, RMM ; Kohn, BPP (AMER GEOPHYSICAL UNION, 2023-04)
    Abstract The fast‐slipping Alpine (∼30 mm/yr), Hope (∼10–20 mm/yr) and Kelly (∼6 mm/yr) faults in the South Island of New Zealand form a complex intersection zone that accommodates tectonic strain along the Australian‐Pacific plate boundary. Analysis of digital topography reveals evidence for stream capture, drainage divide migration, landscape responses to incipient fault development, and preserved enclaves of relic topography that collectively reflect complex interplays between active faulting and landscape evolution. (U‐Th)/He thermochronology of zircon (ZHe) and apatite (AHe) is used to investigate the low‐temperature thermal evolution of rocks in the intersection zone. Weighted mean sample ages for ZHe single grain ages (n = 13 samples) range from ∼9 to 2 Ma, and AHe multi‐grain and single grain aliquot ages (n = 9 samples) range from ∼1.5 to 0.5 Ma. Inverse and forward thermal history modeling reveals distinct spatiotemporal variations in thermal histories. Late Miocene exhumation rates (∼0.6–3.5 km/Myr, assuming geothermal gradients of 33–40 °C/km) through crustal depths of approximately 5–6 km, are interpreted to be controlled by proximity to the Alpine fault, with rocks proximal to the fault recording faster exhumation rates relative to distal samples. Establishment of the Hope‐Kelly fault system in the Quaternary structurally juxtaposed rocks with discordant cooling histories. Rocks throughout the study region record increased cooling rates from ∼2 Ma. Possible causal mechanisms include, spatial changes in rock uplift associated with transport toward the Alpine Fault, increased erosion rates associated with Quaternary climate change, or increased rock mass erodibility associated with development of the Hope‐Kelly fault system.
  • Item
    No Preview Available
    Fault slip-rates and Coulomb stress interactions in the intersection zone of the Hope, Kelly and Alpine Faults, South Island, New Zealand
    Vermeer, JL ; Quigley, MC ; Langridge, RM ; Duffy, BG ; Mildon, ZK ; Diercks, M-L (ELSEVIER, 2022-11-20)
  • Item
    No Preview Available
    Fault geometry and slip rates from the Nullarbor and Roe Plains of south-central Australia: Insights into the spatial and temporal characteristics of intraplate seismicity
    Sellmann, S ; Quigley, M ; Duffy, B ; Yang, H ; Clark, D (WILEY, 2023-02-01)
    Abstract Analysis of TanDEM‐X and Shuttle Radar Topography Mission (SRTM) data reveals geomorphic evidence for 292 fault‐propagation fold scarps across the Miocene Nullarbor and Pliocene Roe Plains in south‐central Australia. Vertical displacements (VD) are determined using topographic profiling of a subset (n = 48) of the fold traces. Fault dips (mean = 44 +16/−14° at 1σ) are estimated from seismic reflection data; the mean dip is assigned to faults with unknown dip and combined with VD to estimate net displacements (ND) and average net displacements (AD) for each fault. AD exceeds single‐event displacements estimated from fault‐length scaling regressions, indicating the identified faults have hosted multiple earthquakes. Combining AD with (i) faulted surface ages (Nullarbor ~10–5 Ma, Roe ~2.5 Ma), (ii) ages of faulted erosional–depositional features (e.g. relic Late Miocene dune fields and Pliocene paleochannels), and (iii) onset of the neotectonic regime in Australia at ~10 Ma yields average slip rates from <0.1 m Myr−1to >17 m Myr−1(mean = 1.1 m Myr−1). Summation of displacements across faults yields crustal horizontal shortening rates lower than geodetically detectable resolution (≤0.01 mm yr−1) since the Late Miocene. The ca. 10 Myr‐long record of neotectonic faulting on the Nullarbor Plain provides important insights into earthquake spatial–temporal behaviours in a slowly deforming intraplate continental region.