School of Geography, Earth and Atmospheric Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Partitioning of Mg, Sr, Ba and U into a subaqueous calcite speleothem
    Drysdale, RN ; Zanchetta, G ; Baneschi, I ; Guidi, M ; Isola, I ; Couchoud, I ; Piccini, L ; Greig, A ; Wong, H ; Woodhead, JD ; Regattieri, E ; Corrick, E ; Paul, B ; Spotl, C ; Denson, E ; Gordon, J ; Jaillet, S ; Dux, F ; Hellstrom, JC (PERGAMON-ELSEVIER SCIENCE LTD, 2019-11-01)
    The trace-element geochemistry of speleothems is becoming increasingly used for reconstructing palaeoclimate, with a particular emphasis on elements whose concentrations vary according to hydrological conditions at the cave site (e.g. Mg, Sr, Ba and U). An important step in interpreting trace-element abundances is understanding the underlying processes of their incorporation. This includes quantifying the fractionation between the solution and speleothem carbonate via partition coefficients (where the partitioning (D) of element X (DX) is the molar ratio [X/Ca] in the calcite divided by the molar ratio [X/Ca] in the parent water) and evaluating the degree of spatial variability across time-constant speleothem layers. Previous studies of how these elements are incorporated into speleothems have focused primarily on stalagmites and their source waters in natural cave settings, or have used synthetic solutions under cave-analogue laboratory conditions to produce similar dripstones. However, dripstones are not the only speleothem types capable of yielding useful palaeoclimate information. In this study, we investigate the incorporation of Mg, Sr, Ba and U into a subaqueous calcite speleothem (CD3) growing in a natural cave pool in Italy. Pool-water measurements extending back 15 years reveal a remarkably stable geochemical environment owing to the deep cave setting, enabling the calculation of precise solution [X/Ca]. We determine the trace element variability of ‘modern’ subaqueous calcite from a drill core taken through CD3 to derive DMg, DSr, DBa and DU then compare these with published cave, cave-analogue and seawater-analogue studies. The DMg for CD3 is anomalously high (0.042 ± 0.002) compared to previous estimates at similar temperatures (∼8 °C). The DSr (0.100 ± 0.007) is similar to previously reported values, but data from this study as well as those from Tremaine and Froelich (2013) and Day and Henderson (2013) suggest that [Na/Sr] might play an important role in Sr incorporation through the potential for Na to outcompete Sr for calcite non-lattice sites. DBa in CD3 (0.086 ± 0.008) is similar to values derived by Day and Henderson (2013) under cave-analogue conditions, whilst DU (0.013 ± 0.002) is almost an order of magnitude lower, possibly due to the unusually slow speleothem growth rates (<1 μm a−1), which could expose the crystal surfaces to leaching of uranyl carbonate. Finally, laser-ablation ICP-MS analysis of the upper 7 μm of CD3, regarded as ‘modern’ for the purposes of this study, reveals considerable heterogeneity, particularly for Sr, Ba and U, which is potentially indicative of compositional zoning. This reinforces the need to conduct 2D mapping and/or multiple laser passes to capture the range of time-equivalent elemental variations prior to palaeoclimate interpretation.
  • Item
    No Preview Available
    Southern Hemisphere subtropical drying as a transient response to warming
    Sniderman, JMK ; Brown, JR ; Woodhead, JD ; King, AD ; Gillett, NP ; Tokarska, KB ; Lorbacher, K ; Hellstrom, J ; Drysdale, RN ; Meinshausen, M (NATURE PUBLISHING GROUP, 2019-03)
    Climate projections1–3 and observations over recent decades4,5 indicate that precipitation in subtropical latitudes declines in response to anthropogenic warming, with significant implications for food production and population sustainability. However, this conclusion is derived from emissions scenarios with rapidly increasing radiative forcing to the year 21001,2, which may represent very different conditions from both past and future ‘equilibrium’ warmer climates. Here, we examine multi-century future climate simulations and show that in the Southern Hemisphere subtropical drying ceases soon after global temperature stabilizes. Our results suggest that twenty-first century Southern Hemisphere subtropical drying is not a feature of warm climates per se, but is primarily a response to rapidly rising forcing and global temperatures, as tropical sea-surface temperatures rise more than southern subtropical sea-surface temperatures under transient warming. Subtropical drying may therefore be a temporary response to rapid warming: as greenhouse gas concentrations and global temperatures stabilize, Southern Hemisphere subtropical regions may experience positive precipitation trends.