School of Geography, Earth and Atmospheric Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    The distribution of fossil pollen and charcoal in stalagmites
    Dickson, B ; Sniderman, JMK ; Korasidis, VA ; Woodhead, J (CAMBRIDGE UNIV PRESS, 2023-05-16)
    Abstract Pollen preserved in caves provides a little-appreciated opportunity to study past vegetation and climate changes in regions where conventional wetland sediments are either unavailable, contain little organic matter, and/or are difficult to date accurately. Most palynology in caves has focused on clastic infill sediments, but pollen preserved in growing speleothems provides important new opportunities to develop vegetation and climatic records that can be dated accurately with radiometric methods. However, when pollen is present in speleothems, concentrations can vary by orders of magnitude, highlighting how little we know about the processes that transport pollen into caves and onto speleothem surfaces, and that determine the pollen's preservation probability. To explore these aspects of speleothem pollen taphonomy, we investigated the distribution of pollen and microscopic charcoal within several stalagmites from southwest Australia. We examined spatial patterns in pollen and charcoal preservation in order to distinguish whether observed gradients result from preservation or are products of systematic transport processes working along stalagmite surfaces. We find that pollen grains and charcoal fragments are located preferentially on the flanks of most stalagmites. This suggests that pollen grain and charcoal deposition on speleothems is influenced by transport and accumulation of detrital debris on growing surfaces. These insights will assist in future sampling campaigns focusing on speleothem pollen and charcoal contents.
  • Item
    No Preview Available
    Elevated Southern Hemisphere moisture availability during glacial periods
    Weij, R ; Sniderman, JMK ; Woodhead, JD ; Hellstrom, JC ; Brown, JR ; Drysdale, RN ; Reed, E ; Bourne, S ; Gordon, J (NATURE PORTFOLIO, 2024-02-08)
    Late Pleistocene ice-age climates are routinely characterized as having imposed moisture stress on low- to mid-latitude ecosystems1-5. This idea is largely based on fossil pollen evidence for widespread, low-biomass glacial vegetation, interpreted as indicating climatic dryness6. However, woody plant growth is inhibited under low atmospheric CO2 (refs. 7,8), so understanding glacial environments requires the development of new palaeoclimate indicators that are independent of vegetation9. Here we show that, contrary to expectations, during the past 350 kyr, peaks in southern Australian climatic moisture availability were largely confined to glacial periods, including the Last Glacial Maximum, whereas warm interglacials were relatively dry. By measuring the timing of speleothem growth in the Southern Hemisphere subtropics, which today has a predominantly negative annual moisture balance, we developed a record of climatic moisture availability that is independent of vegetation and extends through multiple glacial-interglacial cycles. Our results demonstrate that a cool-moist response is consistent across the austral subtropics and, in part, may result from reduced evaporation under cool glacial temperatures. Insofar as cold glacial environments in the Southern Hemisphere subtropics have been portrayed as uniformly arid3,10,11, our findings suggest that their characterization as evolutionary or physiological obstacles to movement and expansion of animal, plant and, potentially, human populations10 should be reconsidered.
  • Item
    No Preview Available
    DQPB : software for calculating disequilibrium U-Pb ages
    Pollard, T ; Woodhead, J ; Hellstrom, J ; Engel, J ; Powell, R ; Drysdale, R (COPERNICUS GESELLSCHAFT MBH, 2023-04-20)
    Abstract. Initial radioactive disequilibrium amongst intermediate nuclides of the U decay chains can have a significant impact on the accuracy of U–Pb ages, especially in young samples. For samples that can reasonably be assumed to have attained radioactive equilibrium at the time of analysis, a relatively straightforward correction may be applied. However, in younger materials where this assumption is unreasonable, it is necessary to replace the familiar U–Pb age equations with more complete expressions that account for growth and decay of intermediate nuclides through time. DQPB is software for calculating U–Pb ages while accounting for the effects of radioactive disequilibrium among intermediate nuclides of the U decay chains. The software is written in Python and distributed as both a pure Python package and a stand-alone graphical user interface (GUI) application that integrates with standard Microsoft Excel spreadsheets. The software implements disequilibrium U–Pb equations to compute ages using various approaches, including concordia intercept ages on a Tera–Wasserburg diagram, U–Pb isochron ages, Pb*/U ages based on single aliquots, and 207Pb-corrected ages. While these age-calculation approaches are tailored toward young samples that cannot reasonably be assumed to have attained radioactive equilibrium at the time of analysis, they may also be applied to older materials where disequilibrium is no longer analytically resolvable. The software allows users to implement a variety of regression algorithms based on both classical and robust statistical approaches, compute weighted average ages and construct customisable, publication-ready plots of U–Pb age data. The regression and weighted average algorithms implemented in DQPB may also be applicable to other (i.e. non-U–Pb) geochronological datasets.
  • Item
    No Preview Available
    238U/206Pb age of the fossil sinter crust (flowstone) covering fault walls of a Badenian neptunian dyke (Dev?n quarry, Western Carpathians)
    Marko, F ; Woodhead, J ; Scholz, D ; Hurai, V ; Lacny, A (SLOVAK ACAD SCIENCES GEOLOGICAL INST, 2022-04)
  • Item
    No Preview Available
    Timescales of speleogenesis in an evolving syngenetic karst: The Tamala Limestone,Western Australia
    Woodhead, J ; Sniderman, K ; Hellstrom, J ; Weij, R ; MacGregor, C ; Dickson, B ; Drysdale, R ; Delane, M ; Henke, D ; Bastian, L ; Baynes, A (ELSEVIER, 2022-02-15)
  • Item
    Thumbnail Image
    Cave opening and fossil accumulation in Naracoorte, Australia, through charcoal and pollen in dated speleothems
    Weij, R ; Woodhead, JD ; Sniderman, JMK ; Hellstrom, JC ; Reed, E ; Bourne, S ; Drysdale, RN ; Pollard, TJ (SPRINGERNATURE, 2022-09-26)
    Abstract Caves are important fossil repositories which provide records extending back over million-year timescales. While the physical processes of cave formation are well understood, the timing of initial cave development and opening—a more important parameter to studies of palaeontology, palaeoanthropology and archaeology—has proved more difficult to constrain. Here we investigate speleothems from the Naracoorte Cave Complex in southern Australia, with a rich record of Pleistocene vertebrate fossils (including extinct megafauna) and partly World Heritage-listed, using U-Th-Pb dating and analyses of their charcoal and pollen content. We find that, although speleothem formation began at least 1.34 million years ago, pollen and charcoal only began to be trapped within growing speleothems from 600,000 years ago. We interpret these two ages to represent the timing of initial cave development and the subsequent opening of the caves to the atmosphere respectively. These findings demonstrate the potential of U-Th-Pb dating combined with charcoal and pollen as proxies to assess the potential upper age limit of vertebrate fossil records found within caves.
  • Item
    Thumbnail Image
    Tufas indicate prolonged periods of water availability linked to human occupation in the southern Kalahari
    von der Meden, J ; Pickering, R ; Schoville, BJ ; Green, H ; Weij, R ; Hellstrom, J ; Greig, A ; Woodhead, J ; Khumalo, W ; Wilkins, J ; Zerboni, A (PUBLIC LIBRARY SCIENCE, 2022-07-20)
    Detailed, well-dated palaeoclimate and archaeological records are critical for understanding the impact of environmental change on human evolution. Ga-Mohana Hill, in the southern Kalahari, South Africa, preserves a Pleistocene archaeological sequence. Relict tufas at the site are evidence of past flowing streams, waterfalls, and shallow pools. Here, we use laser ablation screening to target material suitable for uranium-thorium dating. We obtained 33 ages covering the last 110 thousand years (ka) and identify five tufa formation episodes at 114-100 ka, 73-48 ka, 44-32 ka, 15-6 ka, and ~3 ka. Three tufa episodes are coincident with the archaeological units at Ga-Mohana Hill dating to ~105 ka, ~31 ka, and ~15 ka. Based on our data and the coincidence of dated layers from other local records, we argue that in the southern Kalahari, from ~240 ka to ~71 ka wet phases and human occupation are coupled, but by ~20 ka during the Last Glacial Maximum (LGM), they are decoupled.
  • Item
    Thumbnail Image
    Partitioning of Mg, Sr, Ba and U into a subaqueous calcite speleothem
    Drysdale, RN ; Zanchetta, G ; Baneschi, I ; Guidi, M ; Isola, I ; Couchoud, I ; Piccini, L ; Greig, A ; Wong, H ; Woodhead, JD ; Regattieri, E ; Corrick, E ; Paul, B ; Spotl, C ; Denson, E ; Gordon, J ; Jaillet, S ; Dux, F ; Hellstrom, JC (PERGAMON-ELSEVIER SCIENCE LTD, 2019-11-01)
    The trace-element geochemistry of speleothems is becoming increasingly used for reconstructing palaeoclimate, with a particular emphasis on elements whose concentrations vary according to hydrological conditions at the cave site (e.g. Mg, Sr, Ba and U). An important step in interpreting trace-element abundances is understanding the underlying processes of their incorporation. This includes quantifying the fractionation between the solution and speleothem carbonate via partition coefficients (where the partitioning (D) of element X (DX) is the molar ratio [X/Ca] in the calcite divided by the molar ratio [X/Ca] in the parent water) and evaluating the degree of spatial variability across time-constant speleothem layers. Previous studies of how these elements are incorporated into speleothems have focused primarily on stalagmites and their source waters in natural cave settings, or have used synthetic solutions under cave-analogue laboratory conditions to produce similar dripstones. However, dripstones are not the only speleothem types capable of yielding useful palaeoclimate information. In this study, we investigate the incorporation of Mg, Sr, Ba and U into a subaqueous calcite speleothem (CD3) growing in a natural cave pool in Italy. Pool-water measurements extending back 15 years reveal a remarkably stable geochemical environment owing to the deep cave setting, enabling the calculation of precise solution [X/Ca]. We determine the trace element variability of ‘modern’ subaqueous calcite from a drill core taken through CD3 to derive DMg, DSr, DBa and DU then compare these with published cave, cave-analogue and seawater-analogue studies. The DMg for CD3 is anomalously high (0.042 ± 0.002) compared to previous estimates at similar temperatures (∼8 °C). The DSr (0.100 ± 0.007) is similar to previously reported values, but data from this study as well as those from Tremaine and Froelich (2013) and Day and Henderson (2013) suggest that [Na/Sr] might play an important role in Sr incorporation through the potential for Na to outcompete Sr for calcite non-lattice sites. DBa in CD3 (0.086 ± 0.008) is similar to values derived by Day and Henderson (2013) under cave-analogue conditions, whilst DU (0.013 ± 0.002) is almost an order of magnitude lower, possibly due to the unusually slow speleothem growth rates (<1 μm a−1), which could expose the crystal surfaces to leaching of uranyl carbonate. Finally, laser-ablation ICP-MS analysis of the upper 7 μm of CD3, regarded as ‘modern’ for the purposes of this study, reveals considerable heterogeneity, particularly for Sr, Ba and U, which is potentially indicative of compositional zoning. This reinforces the need to conduct 2D mapping and/or multiple laser passes to capture the range of time-equivalent elemental variations prior to palaeoclimate interpretation.
  • Item
    Thumbnail Image
    A single-column extraction chemistry for isotope dilution U-Pb dating of carbonate
    Engel, J ; Maas, R ; Woodhead, J ; Tympel, J ; Greig, A (ELSEVIER, 2020-01-05)
    U-Pb dating can provide age constraints on carbonate minerals from a wide range of geological settings. A major practical limitation, however, is the need for rapid and efficient extraction of Pb and U from large numbers of typically low-Pb (≤10 ng/g) calcite samples, while maintaining low blanks (∼10 pg Pb) and high Pb-U yields and purity. Here we describe a well-tested ion exchange procedure able to extract Pb and U from large (up to 200 mg) calcite samples using a single pass over a mini-column filled with small (∼0.1 ml) volumes of AG1-X8 anion exchange and Eichrom TRU-resins. This ‘stacked resin’ technique halves the time spent on elemental extractions and provides MC-ICPMS-ready Pb and U fractions in a single day. The method results in considerable savings in laboratory time and allows higher sample throughput, without negative impacts on data quality. It is ideally suited for high-precision U-Pb dating of speleothems where large numbers of samples need to be processed, but it is equally adaptable to calcites from other settings. While not explored as part of this work, the stacked resin technique should also be applicable to other carbonates (dolomite, ankerite, siderite).
  • Item
    No Preview Available
    Low impact sampling of speleothems - reconciling scientific study with cave conservation
    MacGregor, CLV ; Hellstrom, JC ; Woodhead, JD ; Drysdale, RN ; Eberhard, RS (SOCIETA SPELEOLOGICA ITALIANA, 2022-01)
    Speleothems are increasingly valued as important paleoclimate archives and yet the removal of samples from caves can come at a cost to natural heritage, impacting delicate environments with limited mechanisms for repair. Conservation of cave environments is a key responsibility for scientists and, with this in mind, we are working to develop and implement techniques that allow us to extract valuable scientific data, with minimal impact. In this study, we demonstrate the utility of low-impact reconnaissance dating surveys on caves in southern Tasmania and southwest Western Australia as a precursor to the removal of stalagmites for paleoclimate reconstruction. Small flakes of calcite were discretely extracted from the base and tip of fallen stalagmites and dated using U-Th techniques. We specifically targeted stalagmites that have naturally fallen or been previously broken by human interference, to further reduce our impact on the caves. This approach provides maximum and minimum age constraints for each stalagmite and valuable information of growth frequencies without the need to remove whole samples from the cave. Selecting the most appropriate samples to analyze based on reconnaissance ages greatly reduces the quantity of speleothem material to be removed from a cave to locate a desired interval of past time, mitigating the impacts of the research. Moreover, the reconnaissance age data enable us to build an archive of speleothem ages from the cave for future scientific research and to provide information on the age and nature of cave development, useful for cave management purposes and other studies. To assess the accuracy of this method we compared the reconnaissance age with the results of a detailed age evaluation on a small number of stalagmites removed from the caves. We have found this method to be effective and has allowed us to successfully identify several stalagmites suitable for our scientific objectives.