School of Geography, Earth and Atmospheric Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 209
  • Item
    No Preview Available
    Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds
    Ryan, RG ; Stacey, A ; O'Donnell, KM ; Ohshima, T ; Johnson, BC ; Hollenberg, LCL ; Mulvaney, P ; Simpson, DA (AMER CHEMICAL SOC, 2018-04-18)
    Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.
  • Item
    Thumbnail Image
    The Hole in the Ozone: The environmental issue we managed to fix* and why we still need to be sunsmart
    Dargaville, R ; Schofield, R (University of Melbourne, 2015-12-21)
  • Item
  • Item
  • Item
    Thumbnail Image
    Partitioning of Mg, Sr, Ba and U into a subaqueous calcite speleothem
    Drysdale, RN ; Zanchetta, G ; Baneschi, I ; Guidi, M ; Isola, I ; Couchoud, I ; Piccini, L ; Greig, A ; Wong, H ; Woodhead, JD ; Regattieri, E ; Corrick, E ; Paul, B ; Spotl, C ; Denson, E ; Gordon, J ; Jaillet, S ; Dux, F ; Hellstrom, JC (PERGAMON-ELSEVIER SCIENCE LTD, 2019-11-01)
    The trace-element geochemistry of speleothems is becoming increasingly used for reconstructing palaeoclimate, with a particular emphasis on elements whose concentrations vary according to hydrological conditions at the cave site (e.g. Mg, Sr, Ba and U). An important step in interpreting trace-element abundances is understanding the underlying processes of their incorporation. This includes quantifying the fractionation between the solution and speleothem carbonate via partition coefficients (where the partitioning (D) of element X (DX) is the molar ratio [X/Ca] in the calcite divided by the molar ratio [X/Ca] in the parent water) and evaluating the degree of spatial variability across time-constant speleothem layers. Previous studies of how these elements are incorporated into speleothems have focused primarily on stalagmites and their source waters in natural cave settings, or have used synthetic solutions under cave-analogue laboratory conditions to produce similar dripstones. However, dripstones are not the only speleothem types capable of yielding useful palaeoclimate information. In this study, we investigate the incorporation of Mg, Sr, Ba and U into a subaqueous calcite speleothem (CD3) growing in a natural cave pool in Italy. Pool-water measurements extending back 15 years reveal a remarkably stable geochemical environment owing to the deep cave setting, enabling the calculation of precise solution [X/Ca]. We determine the trace element variability of ‘modern’ subaqueous calcite from a drill core taken through CD3 to derive DMg, DSr, DBa and DU then compare these with published cave, cave-analogue and seawater-analogue studies. The DMg for CD3 is anomalously high (0.042 ± 0.002) compared to previous estimates at similar temperatures (∼8 °C). The DSr (0.100 ± 0.007) is similar to previously reported values, but data from this study as well as those from Tremaine and Froelich (2013) and Day and Henderson (2013) suggest that [Na/Sr] might play an important role in Sr incorporation through the potential for Na to outcompete Sr for calcite non-lattice sites. DBa in CD3 (0.086 ± 0.008) is similar to values derived by Day and Henderson (2013) under cave-analogue conditions, whilst DU (0.013 ± 0.002) is almost an order of magnitude lower, possibly due to the unusually slow speleothem growth rates (<1 μm a−1), which could expose the crystal surfaces to leaching of uranyl carbonate. Finally, laser-ablation ICP-MS analysis of the upper 7 μm of CD3, regarded as ‘modern’ for the purposes of this study, reveals considerable heterogeneity, particularly for Sr, Ba and U, which is potentially indicative of compositional zoning. This reinforces the need to conduct 2D mapping and/or multiple laser passes to capture the range of time-equivalent elemental variations prior to palaeoclimate interpretation.
  • Item
    Thumbnail Image
    CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus.
    Paez-Espino, D ; Sharon, I ; Morovic, W ; Stahl, B ; Thomas, BC ; Barrangou, R ; Banfield, JF ; Jansson, JK (American Society for Microbiology, 2015-04-21)
    UNLABELLED: Many bacteria rely on CRISPR-Cas systems to provide adaptive immunity against phages, predation by which can shape the ecology and functioning of microbial communities. To characterize the impact of CRISPR immunization on phage genome evolution, we performed long-term bacterium-phage (Streptococcus thermophilus-phage 2972) coevolution experiments. We found that in this species, CRISPR immunity drives fixation of single nucleotide polymorphisms that accumulate exclusively in phage genome regions targeted by CRISPR. Mutation rates in phage genomes highly exceed those of the host. The presence of multiple phages increased phage persistence by enabling recombination-based formation of chimeric phage genomes in which sequences heavily targeted by CRISPR were replaced. Collectively, our results establish CRISPR-Cas adaptive immunity as a key driver of phage genome evolution under the conditions studied and highlight the importance of multiple coexisting phages for persistence in natural systems. IMPORTANCE: Phages remain an enigmatic part of the biosphere. As predators, they challenge the survival of host bacteria and archaea and set off an "arms race" involving host immunization countered by phage mutation. The CRISPR-Cas system is adaptive: by capturing fragments of a phage genome upon exposure, the host is positioned to counteract future infections. To investigate this process, we initiated massive deep-sequencing experiments with a host and infective phage and tracked the coevolution of both populations over hundreds of days. In the present study, we found that CRISPR immunity drives the accumulation of phage genome rearrangements (which enable longer phage survival) and escape mutations, establishing CRISPR as one of the fundamental drivers of phage evolution.
  • Item
    Thumbnail Image
    Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea
    Bowers, RM ; Kyrpides, NC ; Stepanauskas, R ; Harmon-Smith, M ; Doud, D ; Reddy, TBK ; Schulz, F ; Jarett, J ; Rivers, AR ; Eloe-Fadrosh, EA ; Tringe, SG ; Ivanova, NN ; Copeland, A ; Clum, A ; Becraft, ED ; Malmstrom, RR ; Birren, B ; Podar, M ; Bork, P ; Weinstock, GM ; Garrity, GM ; Dodsworth, JA ; Yooseph, S ; Sutton, G ; Gloeckner, FO ; Gilbert, JA ; Nelson, WC ; Hallam, SJ ; Jungbluth, SP ; Ettema, TJG ; Tighe, S ; Konstantinidis, KT ; Liu, W-T ; Baker, BJ ; Rattei, T ; Eisen, JA ; Hedlund, B ; McMahon, KD ; Fierer, N ; Knight, R ; Finn, R ; Cochrane, G ; Karsch-Mizrachi, I ; Tyson, GW ; Rinke, C ; Lapidus, A ; Meyer, F ; Yilmaz, P ; Parks, DH ; Eren, AM ; Schriml, L ; Banfield, JF ; Hugenholtz, P ; Woyke, T (NATURE PUBLISHING GROUP, 2017-08)
    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.
  • Item
    Thumbnail Image
    Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum
    Anantharaman, K ; Brown, CT ; Burstein, D ; Castelle, CJ ; Probst, AJ ; Thomas, BC ; Williams, KH ; Banfield, JF (PEERJ INC, 2016-01-28)
    Five closely related populations of bacteria from the Candidate Phylum (CP) Peregrinibacteria, part of the bacterial Candidate Phyla Radiation (CPR), were sampled from filtered groundwater obtained from an aquifer adjacent to the Colorado River near the town of Rifle, CO, USA. Here, we present the first complete genome sequences for organisms from this phylum. These bacteria have small genomes and, unlike most organisms from other lineages in the CPR, have the capacity for nucleotide synthesis. They invest significantly in biosynthesis of cell wall and cell envelope components, including peptidoglycan, isoprenoids via the mevalonate pathway, and a variety of amino sugars including perosamine and rhamnose. The genomes encode an intriguing set of large extracellular proteins, some of which are very cysteine-rich and may function in attachment, possibly to other cells. Strain variation in these proteins is an important source of genotypic variety. Overall, the cell envelope features, combined with the lack of biosynthesis capacities for many required cofactors, fatty acids, and most amino acids point to a symbiotic lifestyle. Phylogenetic analyses indicate that these bacteria likely represent a new class within the Peregrinibacteria phylum, although they ultimately may be recognized as members of a separate phylum. We propose the provisional taxonomic assignment as 'Candidatus Peribacter riflensis', Genus Peribacter, Family Peribacteraceae, Order Peribacterales, Class Peribacteria in the phylum Peregrinibacteria.
  • Item
    Thumbnail Image
    Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage
    Mosier, AC ; Miller, CS ; Frischkorn, KR ; Ohm, RA ; Li, Z ; LaButti, K ; Lapidus, A ; Lipzen, A ; Chen, C ; Johnson, J ; Lindquist, EA ; Pan, C ; Hettich, RL ; Grigoriev, IV ; Singer, SW ; Banfield, JF (FRONTIERS MEDIA SA, 2016-03-03)
    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.
  • Item
    Thumbnail Image
    De Novo Sequences of Haloquadratum walsbyi from Lake Tyrrell, Australia, Reveal a Variable Genomic Landscape
    Tully, BJ ; Emerson, JB ; Andrade, K ; Brocks, JJ ; Allen, EE ; Banfield, JF ; Heidelberg, KB (HINDAWI LTD, 2015)
    Hypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative genomic analysis of H. walsbyi to better understand the extent of variation between strains/subspecies. Results revealed that previously isolated strains/subspecies do not fully describe the complete repertoire of the genomic landscape present in H. walsbyi. Rearrangements, insertions, and deletions were observed for the Lake Tyrrell derived Haloquadratum genomes and were supported by environmental de novo sequences, including shifts in the dominant genomic landscape of the two most abundant strains. Analysis pertaining to halomucins indicated that homologs for this large protein are not a feature common for all species of Haloquadratum. Further, we analyzed ATP-binding cassette transporters (ABC-type transporters) for evidence of niche partitioning between different strains/subspecies. We were able to identify unique and variable transporter subunits from all five genomes analyzed and the de novo environmental sequences, suggesting that differences in nutrient and carbon source acquisition may play a role in maintaining distinct strains/subspecies.