School of Geography, Earth and Atmospheric Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    AusTraits, a curated plant trait database for the Australian flora
    Falster, D ; Gallagher, R ; Wenk, EH ; Wright, IJ ; Indiarto, D ; Andrew, SC ; Baxter, C ; Lawson, J ; Allen, S ; Fuchs, A ; Monro, A ; Kar, F ; Adams, MA ; Ahrens, CW ; Alfonzetti, M ; Angevin, T ; Apgaua, DMG ; Arndt, S ; Atkin, OK ; Atkinson, J ; Auld, T ; Baker, A ; von Balthazar, M ; Bean, A ; Blackman, CJ ; Bloomfeld, K ; Bowman, DMJS ; Bragg, J ; Brodribb, TJ ; Buckton, G ; Burrows, G ; Caldwell, E ; Camac, J ; Carpenter, R ; Catford, J ; Cawthray, GR ; Cernusak, LA ; Chandler, G ; Chapman, AR ; Cheal, D ; Cheesman, AW ; Chen, S-C ; Choat, B ; Clinton, B ; Clode, PL ; Coleman, H ; Cornwell, WK ; Cosgrove, M ; Crisp, M ; Cross, E ; Crous, KY ; Cunningham, S ; Curran, T ; Curtis, E ; Daws, M ; DeGabriel, JL ; Denton, MD ; Dong, N ; Du, P ; Duan, H ; Duncan, DH ; Duncan, RP ; Duretto, M ; Dwyer, JM ; Edwards, C ; Esperon-Rodriguez, M ; Evans, JR ; Everingham, SE ; Farrell, C ; Firn, J ; Fonseca, CR ; French, BJ ; Frood, D ; Funk, JL ; Geange, SR ; Ghannoum, O ; Gleason, SM ; Gosper, CR ; Gray, E ; Groom, PK ; Grootemaat, S ; Gross, C ; Guerin, G ; Guja, L ; Hahs, AK ; Harrison, MT ; Hayes, PE ; Henery, M ; Hochuli, D ; Howell, J ; Huang, G ; Hughes, L ; Huisman, J ; Ilic, J ; Jagdish, A ; Jin, D ; Jordan, G ; Jurado, E ; Kanowski, J ; Kasel, S ; Kellermann, J ; Kenny, B ; Kohout, M ; Kooyman, RM ; Kotowska, MM ; Lai, HR ; Laliberte, E ; Lambers, H ; Lamont, BB ; Lanfear, R ; van Langevelde, F ; Laughlin, DC ; Laugier-kitchener, B-A ; Laurance, S ; Lehmann, CER ; Leigh, A ; Leishman, MR ; Lenz, T ; Lepschi, B ; Lewis, JD ; Lim, F ; Liu, U ; Lord, J ; Lusk, CH ; Macinnis-Ng, C ; McPherson, H ; Magallon, S ; Manea, A ; Lopez-Martinez, A ; Mayfeld, M ; McCarthy, JK ; Meers, T ; van der Merwe, M ; Metcalfe, DJ ; Milberg, P ; Mokany, K ; Moles, AT ; Moore, BD ; Moore, N ; Morgan, JW ; Morris, W ; Muir, A ; Munroe, S ; Nicholson, A ; Nicolle, D ; Nicotra, AB ; Niinemets, U ; North, T ; O'Reilly-Nugent, A ; O'Sullivan, OS ; Oberle, B ; Onoda, Y ; Ooi, MKJ ; Osborne, CP ; Paczkowska, G ; Pekin, B ; Pereira, CG ; Pickering, C ; Pickup, M ; Pollock, LJ ; Poot, P ; Powell, JR ; Power, S ; Prentice, IC ; Prior, L ; Prober, SM ; Read, J ; Reynolds, V ; Richards, AE ; Richardson, B ; Roderick, ML ; Rosell, JA ; Rossetto, M ; Rye, B ; Rymer, PD ; Sams, M ; Sanson, G ; Sauquet, H ; Schmidt, S ; Schoenenberger, J ; Schulze, E-D ; Sendall, K ; Sinclair, S ; Smith, B ; Smith, R ; Soper, F ; Sparrow, B ; Standish, RJ ; Staples, TL ; Stephens, R ; Szota, C ; Taseski, G ; Tasker, E ; Thomas, F ; Tissue, DT ; Tjoelker, MG ; Tng, DYP ; de Tombeur, F ; Tomlinson, K ; Turner, NC ; Veneklaas, EJ ; Venn, S ; Vesk, P ; Vlasveld, C ; Vorontsova, MS ; Warren, CA ; Warwick, N ; Weerasinghe, LK ; Wells, J ; Westoby, M ; White, M ; Williams, NSG ; Wills, J ; Wilson, PG ; Yates, C ; Zanne, AE ; Zemunik, G ; Zieminska, K (NATURE PORTFOLIO, 2021-09-30)
    We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  • Item
    Thumbnail Image
    Seedling diversity in actively and passively restored tropical forest understories
    Wills, J ; Herbohn, J ; Wells, J ; Maranguit Moreno, MO ; Ferraren, A ; Firn, J (WILEY, 2021-04)
    Alternative methods for restoring tropical forests influence the ecological processes that shape recruitment of understory species. In turn, the traits of species recruited will influence the ecological processes the forests provide now and over the long term. We assess the phylogenetic and functional structure of seedlings beneath monoculture plantations, mixed-species plantations (both active restoration) and regenerating selectively logged native forests (passive restoration), considering traits of specific leaf area (SLA, including within-species variation), leaf nitrogen and phosphorus content, life-form, potential plant height, and dispersal type. Monoculture plantations comprised seedlings that were more closely related then would be expected by chance (i.e., phylogenetically clustered), and regenerating forest contained species more distantly related then would be expected by chance (i.e., phylogenetically overdispersed). This suggests that seedlings beneath monocultures assemble through environmental filtering and through the dispersal limitation of predictable functional guilds. However, dispersal limitation is frequently overcome by human-assisted dispersal, increasing trait diversity. Comparing SLA values revealed that regenerating forests recruit seedlings with both high and low mean and variation of SLA, leading to higher overall diversity. Regenerating forest seedlings showed signs of environmental filtering, only based on within-species variation of SLA. Regenerating forest understories appear to favor species that show a high intraspecific variation in SLA values (e.g., Pterocarpus indicus Willd.) and at the same time provided habitat for later successional seedlings that show a lower intraspecific variation in SLA (e.g., Canarium luzonicum (Blume) A.Gray). This trait diversity suggests limiting similarity or competitive exclusion may be reduced because of niche differences, allowing species with different traits to coexist. Phylogenetic and functionally distinct species are restricted in their regeneration capacity, many of which are of conservation significance (under the IUCN Red List). Reforestation projects should maximize desired ecological services (including conservation value) by actively managing for the recruitment of species that are phylogenetically and functionally (including intraspecifically) distinct. This management aim will increase the probability of fulfilling a wider array of niche spaces and potentially increase the diversity of ecosystem services provided.
  • Item
    Thumbnail Image
    Local conditions and policy design determine whether ecological compensation can achieve No Net Loss goals
    Sonter, LJ ; Simmonds, JS ; Watson, JEM ; Jones, JPG ; Kiesecker, JM ; Costa, HM ; Bennun, L ; Edwards, S ; Grantham, HS ; Griffiths, VF ; Jones, K ; Sochi, K ; Puydarrieux, P ; Quetier, F ; Rainer, H ; Rainey, H ; Roe, D ; Satar, M ; Soares-Filho, BS ; Starkey, M ; ten Kate, K ; Victurine, R ; von Hase, A ; Wells, JA ; Maron, M (Nature Research, 2020-04-29)
    Many nations use ecological compensation policies to address negative impacts of development projects and achieve No Net Loss (NNL) of biodiversity and ecosystem services. Yet, failures are widely reported. We use spatial simulation models to quantify potential net impacts of alternative compensation policies on biodiversity (indicated by native vegetation) and two ecosystem services (carbon storage, sediment retention) across four case studies (in Australia, Brazil, Indonesia, Mozambique). No policy achieves NNL of biodiversity in any case study. Two factors limit their potential success: the land available for compensation (existing vegetation to protect or cleared land to restore), and expected counterfactual biodiversity losses (unregulated vegetation clearing). Compensation also fails to slow regional biodiversity declines because policies regulate only a subset of sectors, and expanding policy scope requires more land than is available for compensation activities. Avoidance of impacts remains essential in achieving NNL goals, particularly once opportunities for compensation are exhausted.