Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    No Preview Available
    BRINGING THE BENCH TO THE BEDSIDE: UPDATES ON THE MIND STUDY AND WHAT A ROUTINELY AVAILABLE SIMPLE BLOOD TEST FOR NEUROFILAMENT LIGHT WOULD MEAN AT THE CLINICAL COAL FACE FOR PATIENTS AND FAMILIES, PSYCHIATRISTS, NEUROLOGISTS, GERIATRICIANS AND GENERAL PRACTITIONERS
    Eratne, D ; Lewis, C ; Cadwallader, C ; Kang, M ; Keem, M ; Santillo, A ; Li, QX ; Stehmann, C ; Loi, SM ; Walterfang, M ; Watson, R ; Yassi, N ; Blennow, K ; Zetterberg, H ; Janelidze, S ; Hansson, O ; Berry-Kravitz, E ; Brodtmann, A ; Darby, D ; Walker, A ; Dean, O ; Masters, CL ; Collins, S ; Berkovic, SF ; Velakoulis, D (SAGE PUBLICATIONS LTD, 2022-05)
  • Item
    No Preview Available
    Plasma neurofilament light chain and phosphorylated tau 181 in neurodegenerative and psychiatric disorders: moving closer towards a simple diagnostic test like a 'C‐reactive protein' for the brain?
    Eratne, D ; Santillo, A ; Li, Q ; Kang, M ; Keem, M ; Lewis, C ; Loi, SM ; Walterfang, M ; Hansson, O ; Janelidze, S ; Yassi, N ; Watson, R ; Berkovic, SF ; Masters, CL ; Collins, S ; Velakoulis, D (Wiley, 2021-12)
    Abstract Background Accurate, timely diagnosis of neurodegenerative disorders, in particular distinguishing primary psychiatric from neurological disorders and in younger people, can be challenging. There is a need for biomarkers to reduce the diagnostic odyssey and improve outcomes. Neurofilament light (NfL) has shown promise as a diagnostic biomarker in a wide range of disorders. Our Markers in Neuropsychiatric Disorders (MiND) Study builds on our pilot (Eratne et al, ANZJP, 2020), to explore the diagnostic and broader utility of plasma and cerebrospinal fluid (CSF) NfL and other novel markers such as phosphorylated tau 181 (p‐tau181), in a broad range of psychiatric and neurodegenerative/neurological disorders, with a view of translation into routine clinical practice. Methods We assessed plasma and/or CSF NfL and p‐tau181 concentrations in broad cohorts, including: patients assessed for neurocognitive/psychiatric symptoms at Neuropsychiatry and Melbourne Young‐Onset Dementia services and other services, in a wide range of disorders including Alzheimer disease, frontotemporal dementia, schizophrenia, bipolar disorder, depression, Niemann‐Pick Type C, epilepsy, functional neurological disorders. The most recent primary consensus diagnosis informed by established diagnostic criteria was categorised: primary psychiatric disorder (PPD), neurodegenerative/neurological disorder (ND), or healthy controls (HC). Results Findings from over 500 patients/participants will be presented, which indicate that CSF and plasma NfL levels are significantly elevated in a broad range of ND compared to a broad range of PPD, and HC, and bvFTD progressors from phenocopy syndromes, differentiating with areas under the curve of >0.90, sensitivity and specificity >90%. Plasma P‐tau181 levels distinguished Alzheimer disease (mainly younger sporadic), compared to other neurodegenerative disorders, with AUC 0.90, 90% sensitivity and specificity. As recruitment, sample analysis, data collection is ongoing, the most up to date results will be presented. Conclusions NfL shows great promise as a diagnostic test to assist with the common, challenging diagnostic dilemma of distinguishing neurodegenerative from non‐neurodegenerative and primary psychiatric disorders. Plasma p‐tau181 shows strong diagnostic utility in younger‐onset Alzheimer disease. A significantly elevated NfL in someone with a psychiatric diagnosis should prompt consideration of neurodegenerative differentials. Plasma NfL could dramatically alter clinical care of patients with neuropsychiatric and neurological symptoms, improving outcomes for patients, their families, the healthcare system, and clinical trials.
  • Item
    No Preview Available
    Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives
    Eratne, D ; Janelidze, S ; Malpas, CB ; Loi, S ; Walterfane, M ; Merritt, A ; Diouf, I ; Blennow, K ; Zetterberg, H ; Cilia, B ; Warman, C ; Bousman, C ; Everall, I ; Zalesky, A ; Jayaram, M ; Thomas, N ; Berkovic, SF ; Hansson, O ; Velakoulis, D ; Pantelis, C ; Santillo, A (SAGE PUBLICATIONS LTD, 2022-10)
    OBJECTIVE: Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuroprogressive or neurodegenerative component to schizophrenia, remain largely unknown. Examining fluid biomarkers of diverse types of neuronal damage could increase our understanding of these processes, as well as potentially provide clinically useful biomarkers, for example with assisting with differentiation from progressive neurodegenerative disorders such as Alzheimer and frontotemporal dementias. METHODS: This study measured plasma neurofilament light chain protein (NfL) using ultrasensitive Simoa technology, to investigate the degree of neuronal injury in a well-characterised cohort of people with treatment-resistant schizophrenia on clozapine (n = 82), compared to first-degree relatives (an at-risk group, n = 37), people with schizophrenia not treated with clozapine (n = 13), and age- and sex-matched controls (n = 59). RESULTS: We found no differences in NfL levels between treatment-resistant schizophrenia (mean NfL, M = 6.3 pg/mL, 95% confidence interval: [5.5, 7.2]), first-degree relatives (siblings, M = 6.7 pg/mL, 95% confidence interval: [5.2, 8.2]; parents, M after adjusting for age = 6.7 pg/mL, 95% confidence interval: [4.7, 8.8]), controls (M = 5.8 pg/mL, 95% confidence interval: [5.3, 6.3]) and not treated with clozapine (M = 4.9 pg/mL, 95% confidence interval: [4.0, 5.8]). Exploratory, hypothesis-generating analyses found weak correlations in treatment-resistant schizophrenia, between NfL and clozapine levels (Spearman's r = 0.258, 95% confidence interval: [0.034, 0.457]), dyslipidaemia (r = 0.280, 95% confidence interval: [0.064, 0.470]) and a negative correlation with weight (r = -0.305, 95% confidence interval: [-0.504, -0.076]). CONCLUSION: Treatment-resistant schizophrenia does not appear to be associated with neuronal, particularly axonal degeneration. Further studies are warranted to investigate the utility of NfL to differentiate treatment-resistant schizophrenia from neurodegenerative disorders such as behavioural variant frontotemporal dementia, and to explore NfL in other stages of schizophrenia such as the prodome and first episode.
  • Item
    No Preview Available
    Diagnostic delay in focal epilepsy: Association with brain pathology and age
    Yang, M ; Tan, KM ; Carney, P ; Kwan, P ; O'Brien, TJ ; Berkovic, SF ; Perucca, P ; McIntosh, AM (W B SAUNDERS CO LTD, 2022-03)
    PURPOSE: Between 16-77% of patients with newly diagnosed epilepsy report seizures before diagnosis but little is known about the risk factors for diagnostic delay. Here, we examined the association between prior seizures and neuroimaging findings in newly diagnosed focal epilepsy. METHODS: Adults diagnosed with focal epilepsy at First Seizure Clinics (FSC) at the Royal Melbourne Hospital or Austin Health, Melbourne, Australia, between 2000 and 2010 were included. Medical records were audited for seizure history accrued from the detailed FSC interview. Potentially epileptogenic brain abnormality type, location and extent was determined from neuroimaging. Statistical analysis comprised multivariate logistic regression. RESULTS: Of 735 patients, 44% reported seizure/s before the index seizure. Among the 260 individuals with a potentially epileptogenic brain imaging abnormality, 34% reported prior seizures. Of 475 individuals with no abnormality, 50% reported prior seizures (p < 0.001). Patients with post-stroke changes had lower odds of prior seizures (n = 24/95, OR 0.5, p = 0.005) compared to patients without abnormalities, as did patients with high-grade tumors (n = 1/10, OR 0.1, p = 0.04). Abnormality location or extent was not associated with seizures. Prior seizures were inversely associated with age, patients aged >50 years had lower odds compared to those 18-30 years (OR 0.5, p = 0.01). CONCLUSIONS: A history of prior seizures is less common in patients with newly diagnosed focal epilepsy associated with antecedent stroke or high-grade tumor than in those without a lesion, and is also less common in older individuals. These findings may be related to age, biological mechanisms or aspects of diagnosis and assessment of these events.
  • Item
    No Preview Available
    Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors
    Eratne, D ; Keem, M ; Lewis, C ; Kang, M ; Walterfang, M ; Farrand, S ; Loi, S ; Kelso, W ; Cadwallader, C ; Berkovic, SF ; Li, Q-X ; Masters, CL ; Collins, S ; Santillo, A ; Velakoulis, D (ELSEVIER, 2022-11-15)
    BACKGROUND: Distinguishing behavioural variant frontotemporal dementia (bvFTD) from non-neurodegenerative 'non-progressor' mimics of frontal lobe dysfunction, can be one of the most challenging clinical dilemmas. A biomarker of neuronal injury, neurofilament light chain (NfL), could reduce misdiagnosis and delay. METHODS: Cerebrospinal fluid (CSF) NfL, amyloid beta 1-42 (AB42), total and phosphorylated tau (T-tau, P-tau) levels were examined in patients with an initial diagnosis of bvFTD. Based on follow-up information, patients were categorised as Progressors or Non-Progressors: further subtyped into Non-Progressor Revised (non-neurological/neurodegenerative final diagnosis), and Non-Progressor Static (static deficits, not fully explained by non-neurological/neurodegenerative causes). RESULTS: Forty-three patients were included: 20 Progressors, 23 Non-Progressors (15 Non-Progressor Revised, 8 Non-Progressor Static), and 20 controls. NfL concentrations were lower in Non-Progressors (Non-Progressors Mean, M = 554 pg/mL, 95%CI:[461, 675], Non-Progressor Revised M = 459 pg/mL, 95%CI:[385, 539], and Non-Progressor Static M = 730 pg/mL, 95%CI:[516, 940]), compared to Progressors (M = 2397 pg/mL, 95%CI:[1607, 3332]). NfL distinguished Progressors from Non-Progressors with the highest accuracy (area under the curve 0.92, 90%/87% sensitivity/specificity, 86%/91% positive/negative predictive value, 88% accuracy). Non-Progressor Static tended to have higher T-tau and P-tau levels compared to Non-Progressor Revised Diagnoses. CONCLUSION: This study demonstrated strong diagnostic utility of CSF NfL to distinguish bvFTD from non-progressor variants, at baseline, with high accuracy, in a real-world clinical setting. This has important clinical implications, to improve outcomes for patients and clinicians facing this challenging clinical dilemma, healthcare services, and clinical trials. Further research is required to investigate heterogeneity within the non-progressor group and potential diagnostic algorithms, and prospective studies are underway assessing plasma NfL.
  • Item
    No Preview Available
    A founder event causing a dominant childhood epilepsy survives 800 years through weak selective pressure
    Grinton, BE ; Robertson, E ; Fearnley, LG ; Scheffer, IE ; Marson, AG ; O'Brien, TJ ; Pickrell, WO ; Rees, M ; Sisodiya, SM ; Balding, DJ ; Bennett, MF ; Bahlo, M ; Berkovic, SF ; Oliver, KL (CELL PRESS, 2022-11-03)
    Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought.
  • Item
    Thumbnail Image
    Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings
    Eratne, D ; Loi, SM ; Qiao-Xin, L ; Stehmann, C ; Malpas, CB ; Santillo, A ; Janelidze, S ; Cadwallader, C ; Walia, N ; Ney, B ; Lewis, V ; Senesi, M ; Fowler, C ; McGlade, A ; Varghese, S ; Ravanfar, P ; Kelso, W ; Farrand, S ; Keem, M ; Kang, M ; Goh, AMY ; Dhiman, K ; Gupta, V ; Watson, R ; Yassi, N ; Kaylor-Hughes, C ; Kanaan, R ; Perucca, P ; Dobson, H ; Vivash, L ; Ali, R ; O'Brien, TJ ; Hansson, O ; Zetterberg, H ; Blennow, K ; Walterfang, M ; Masters, CL ; Berkovic, SF ; Collins, S ; Velakoulis, D (WILEY, 2022-11)
    INTRODUCTION: Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS: Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS: A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION: We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.
  • Item
    Thumbnail Image
    Adjunctive Transdermal Cannabidiol for Adults With Focal Epilepsy A Randomized Clinical Trial
    O'Brien, TJ ; Berkovic, SF ; French, JA ; Messenheimer, JA ; Sebree, TB ; Bonn-Miller, MO ; Gutterman, DL (AMER MEDICAL ASSOC, 2022-07-08)
    IMPORTANCE: Cannabidiol has shown efficacy in randomized clinical trials for drug-resistant epilepsy in specific syndromes that predominantly affect children. However, high-level evidence for the efficacy and safety of cannabidiol in the most common form of drug-resistant epilepsy in adults, focal epilepsy, is lacking. OBJECTIVE: To investigate the efficacy, safety, and tolerability of transdermally administered cannabidiol in adults with drug-resistant focal epilepsy. DESIGN, SETTING, AND PARTICIPANTS: A randomized, double-blind, placebo-controlled, multicenter clinical trial at 14 epilepsy trial centers in Australia and New Zealand. Participants were adults with drug-resistant focal epilepsy receiving a stable regimen of up to 3 antiseizure medications. Data were analyzed from July 2017 to November 2018. INTERVENTIONS: Eligible participants were randomized (1:1:1) to 195-mg or 390-mg transdermal cannabidiol or placebo twice daily for 12 weeks, after which they could enroll in an open-label extension study for up to 2 years. MAIN OUTCOMES AND MEASURES: Seizure frequency was self-reported using a daily diary. The primary efficacy end point was the least squares mean difference in the log-transformed total seizure frequency per 28-day period, adjusted to a common baseline log seizure rate, during the 12-week treatment period. RESULTS: A total of 188 patients (45% male [85 patients] and 54.8% female [103 patients]) with a mean (SD) age of 39.2 (12.78) years were randomized, treated, and analyzed (195-mg cannabidiol, 63 participants; 390-mg cannabidiol, 62 participants; placebo, 63 participants). At week 12 of the double-blind period, there was no difference in seizure frequency between placebo (mean [SD] 2.49 [1.31] seizures per 28 days) and 195-mg cannabidiol (mean [SD] 2.51 [1.15] seizures per 28 days; least squares mean difference, 0.014; 95% CI, -0.175 to 0.203; P = .89) or 390-mg cannabidiol (mean [SD] 2.59 [1.12] seizures per 28 days; least squares mean difference, 0.096; 95% CI, -0.093 to 0.285; P = .32). By month 6 of the open-label extension, 115 patients (60.8%) achieved a seizure reduction of at least 50%. Treatment-emergent adverse events occurred in 50.4% (63 of 125 participants) of the cannabidiol group vs 41.3% (26 of 63 participants) in the placebo group, with a treatment difference of 9.1% (95% CI, -6.0% to 23.6%), and occurred at similar rates in the cannabidiol groups. Few participants discontinued (7% [14 of 188 participants]), and most (98% [171 of 174 participants]) continued into the open-label extension. CONCLUSIONS AND RELEVANCE: Both doses of transdermal cannabidiol were well tolerated and safe. No significant difference in efficacy was observed between cannabidiol and placebo during the double-blind treatment period. The open-label extension demonstrated the long-term safety, tolerability, and acceptability of transdermal cannabidiol delivery. TRIAL REGISTRATION: ACTRN12616000510448 (double-blind); ACTRN12616001455459 (open-label).
  • Item
    Thumbnail Image
    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
    Motelow, JE ; Povysil, G ; Dhindsa, RS ; Stanley, KE ; Allen, AS ; Feng, Y-CA ; Howrigan, DP ; Abbott, LE ; Tashman, K ; Cerrato, F ; Cusick, C ; Singh, T ; Heyne, H ; Byrnes, AE ; Churchhouse, C ; Watts, N ; Solomonson, M ; Lal, D ; Gupta, N ; Neale, BM ; Cavalleri, GL ; Cossette, P ; Cotsapas, C ; De Jonghe, P ; Dixon-Salazar, T ; Guerrini, R ; Hakonarson, H ; Heinzen, EL ; Helbig, I ; Kwan, P ; Marson, AG ; Petrovski, S ; Kamalakaran, S ; Sisodiya, SM ; Stewart, R ; Weckhuysen, S ; Depondt, C ; Dlugos, DJ ; Scheffer, IE ; Striano, P ; Freyer, C ; Krause, R ; May, P ; McKenna, K ; Regan, BM ; Bennett, CA ; Leu, C ; Leech, SL ; O'Brien, TJ ; Todaro, M ; Stamberger, H ; Andrade, DM ; Ali, QZ ; Sadoway, TR ; Krestel, H ; Schaller, A ; Papacostas, SS ; Kousiappa, I ; Tanteles, GA ; Christou, Y ; Sterbova, K ; Vlckova, M ; Sedlackova, L ; Lassuthova, P ; Klein, KM ; Rosenow, F ; Reif, PS ; Knake, S ; Neubauer, BA ; Zimprich, F ; Feucht, M ; Reinthaler, EM ; Kunz, WS ; Zsurka, G ; Surges, R ; Baumgartner, T ; von Wrede, R ; Pendziwiat, M ; Muhle, H ; Rademacher, A ; van Baalen, A ; von Spiczak, S ; Stephani, U ; Afawi, Z ; Korczyn, AD ; Kanaan, M ; Canavati, C ; Kurlemann, G ; Muller-Schluter, K ; Kluger, G ; Haeusler, M ; Blatt, I ; Lemke, JR ; Krey, I ; Weber, YG ; Wolking, S ; Becker, F ; Lauxmann, S ; Bosselmann, C ; Kegele, J ; Hengsbach, C ; Rau, S ; Steinhoff, BJ ; Schulze-Bonhage, A ; Borggraefe, I ; Schankin, CJ ; Schubert-Bast, S ; Schreiber, H ; Mayer, T ; Korinthenberg, R ; Brockmann, K ; Wolff, M ; Dennig, D ; Madeleyn, R ; Kalviainen, R ; Saarela, A ; Timonen, O ; Linnankivi, T ; Lehesjoki, A-E ; Rheims, S ; Lesca, G ; Ryvlin, P ; Maillard, L ; Valton, L ; Derambure, P ; Bartolomei, F ; Hirsch, E ; Michel, V ; Chassoux, F ; Rees, M ; Chung, S-K ; Pickrell, WO ; Powell, R ; Baker, MD ; Fonferko-Shadrach, B ; Lawthom, C ; Anderson, J ; Schneider, N ; Balestrini, S ; Zagaglia, S ; Braatz, V ; Johnson, MR ; Auce, P ; Sills, GJ ; Baum, LW ; Sham, PC ; Cherny, SS ; Lui, CHT ; Delanty, N ; Doherty, CP ; Shukralla, A ; El-Naggar, H ; Widdess-Walsh, P ; Barisi, N ; Canafoglia, L ; Franceschetti, S ; Castellotti, B ; Granata, T ; Ragona, F ; Zara, F ; Iacomino, M ; Riva, A ; Madia, F ; Vari, MS ; Salpietro, V ; Scala, M ; Mancardi, MM ; Nobili, L ; Amadori, E ; Giacomini, T ; Bisulli, F ; Pippucci, T ; Licchetta, L ; Minardi, R ; Tinuper, P ; Muccioli, L ; Mostacci, B ; Gambardella, A ; Labate, A ; Annesi, G ; Manna, L ; Gagliardi, M ; Parrini, E ; Mei, D ; Vetro, A ; Bianchini, C ; Montomoli, M ; Doccini, V ; Barba, C ; Hirose, S ; Ishii, A ; Suzuki, T ; Inoue, Y ; Yamakawa, K ; Beydoun, A ; Nasreddine, W ; Zgheib, NK ; Tumiene, B ; Utkus, A ; Sadleir, LG ; King, C ; Caglayan, SH ; Arslan, M ; Yapici, Z ; Topaloglu, P ; Kara, B ; Yis, U ; Turkdogan, D ; Gundogdu-Eken, A ; Bebek, N ; Tsai, M-H ; Ho, C-J ; Lin, C-H ; Lin, K-L ; Chou, I-J ; Poduri, A ; Shiedley, BR ; Shain, C ; Noebels, JL ; Goldman, A ; Busch, RM ; Jehi, L ; Najm, IM ; Ferguson, L ; Khoury, J ; Glauser, TA ; Clark, PO ; Buono, RJ ; Ferraro, TN ; Sperling, MR ; Lo, W ; Privitera, M ; French, JA ; Schachter, S ; Kuzniecky, R ; Devinsky, O ; Hegde, M ; Greenberg, DA ; Ellis, CA ; Goldberg, E ; Helbig, KL ; Cosico, M ; Vaidiswaran, P ; Fitch, E ; Berkovic, SF ; Lerche, H ; Lowenstein, DH ; Goldstein, DB (CELL PRESS, 2021-06-03)
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
  • Item
    No Preview Available
    Climate change and epilepsy: Insights from clinical and basic science studies
    Gulcebi, M ; Bartolini, E ; Lee, O ; Lisgaras, CP ; Onat, F ; Mifsud, J ; Striano, P ; Vezzani, A ; Hildebrand, MS ; Jimenez-Jimenez, D ; Junck, L ; Lewis-Smith, D ; Scheffer, IE ; Thijs, RD ; Zuberi, SM ; Blenkinsop, S ; Fowler, HJ ; Foley, A ; Sisodiya, SM ; Balestrini, S ; Berkovic, S ; Cavalleri, G ; Correa, DJ ; Custodio, HM ; Galovic, M ; Guerrini, R ; Henshall, D ; Howard, O ; Hughes, K ; Katsarou, A ; Koeleman, BPC ; Krause, R ; Lowenstein, D ; Mandelenaki, D ; Marini, C ; O'Brien, TJ ; Pace, A ; De Palma, L ; Perucca, P ; Pitkanen, A ; Quinn, F ; Selmer, KK ; Steward, CA ; Swanborough, N ; Thijs, R ; Tittensor, P ; Trivisano, M ; Weckhuysen, S ; Zara, F (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-03)
    Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.