Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    White Matter Degeneration after Ischemic Stroke: A Longitudinal Diffusion Tensor Imaging Study
    Visser, MM ; Yassi, N ; Campbell, BCV ; Desmond, PM ; Davis, SM ; Spratt, N ; Parsons, M ; Bivard, A (WILEY, 2019-01)
    BACKGROUND AND PURPOSE: Degeneration of gray matter and subcortical structures after ischemic stroke has been well described. However, little is known about white matter degeneration after stroke. It is unclear whether white matter degeneration occurs throughout the whole brain, or whether patterns of degeneration occur more in specific brain areas. METHODS: We prospectively collected National Institutes of Health Stroke Scale (NIHSS) scores and diffusion tensor imaging (DTI) in patients with acute ischemic stroke within the first week after onset (baseline), and at 1 and 3 months. DTI was processed to produce maps of fractional anisotropy, apparent diffusion coefficients, and axial and radial diffusivity. DTI parameters in specified regions-of-interest corresponding to items on the NIHSS were calculated and changes over time were assessed using linear mixed-effect modeling. RESULTS: Seventeen patients were included in the study. Mean age (SD) was 71 (11.7) years, and median (IQR) baseline NIHSS 9 (5-13.3). Changes over time were observed in both visual cortices, contralesional primary motor cortex, premotor cortex, and superior temporal gyrus (P < .05). Changes in the ipsilesional motor cortex and inferior parietal lobule were only seen in patients with scores on the respective NIHSS-items (P < .05). No significant changes in global white matter diffusivity parameters were identified (P > .05). CONCLUSION: White matter changes after stroke may be localized rather than a global phenomenon.
  • Item
    Thumbnail Image
    Endovascular Thrombectomy for Ischemic Stroke Increases Disability-Free Survival, Quality of Life, and Life Expectancy and Reduces Cost
    Campbell, BCV ; Mitchell, PJ ; Churilov, L ; Keshtkaran, M ; Hong, K-S ; Kleinig, TJ ; Dewey, HM ; Yassi, N ; Yan, B ; Dowling, RJ ; Parsons, MW ; Wu, TY ; Brooks, M ; Simpson, MA ; Miteff, F ; Levi, CR ; Krause, M ; Harrington, TJ ; Faulder, KC ; Steinfort, BS ; Ang, T ; Scroop, R ; Barber, PA ; McGuinness, B ; Wijeratne, T ; Phan, TG ; Chong, W ; Chandra, RV ; Bladin, CF ; Rice, H ; de Villiers, L ; Ma, H ; Desmond, PM ; Meretoja, A ; Cadilhac, DA ; Donnan, GA ; Davis, SM (FRONTIERS MEDIA SA, 2017-12-14)
    BACKGROUND: Endovascular thrombectomy improves functional outcome in large vessel occlusion ischemic stroke. We examined disability, quality of life, survival and acute care costs in the EXTEND-IA trial, which used CT-perfusion imaging selection. METHODS: Large vessel ischemic stroke patients with favorable CT-perfusion were randomized to endovascular thrombectomy after alteplase versus alteplase-only. Clinical outcome was prospectively measured using 90-day modified Rankin scale (mRS). Individual patient expected survival and net difference in Disability/Quality-adjusted life years (DALY/QALY) up to 15 years from stroke were modeled using age, sex, 90-day mRS, and utility scores. Level of care within the first 90 days was prospectively measured and used to estimate procedure and inpatient care costs (US$ reference year 2014). RESULTS: There were 70 patients, 35 in each arm, mean age 69, median NIHSS 15 (IQR 12-19). The median (IQR) disability-weighted utility score at 90 days was 0.65 (0.00-0.91) in the alteplase-only versus 0.91 (0.65-1.00) in the endovascular group (p = 0.005). Modeled life expectancy was greater in the endovascular versus alteplase-only group (median 15.6 versus 11.2 years, p = 0.02). The endovascular thrombectomy group had fewer simulated DALYs lost over 15 years [median (IQR) 5.5 (3.2-8.7) versus 8.9 (4.7-13.8), p = 0.02] and more QALY gained [median (IQR) 9.3 (4.2-13.1) versus 4.9 (0.3-8.5), p = 0.03]. Endovascular patients spent less time in hospital [median (IQR) 5 (3-11) days versus 8 (5-14) days, p = 0.04] and rehabilitation [median (IQR) 0 (0-28) versus 27 (0-65) days, p = 0.03]. The estimated inpatient costs in the first 90 days were less in the thrombectomy group (average US$15,689 versus US$30,569, p = 0.008) offsetting the costs of interhospital transport and the thrombectomy procedure (average US$10,515). The average saving per patient treated with thrombectomy was US$4,365. CONCLUSION: Thrombectomy patients with large vessel occlusion and salvageable tissue on CT-perfusion had reduced length of stay and overall costs to 90 days. There was evidence of clinically relevant improvement in long-term survival and quality of life. CLINICAL TRIAL REGISTRATION: http://www.ClinicalTrials.gov NCT01492725 (registered 20/11/2011).
  • Item
    No Preview Available
    Comparison of Computed Tomography Perfusion and Magnetic Resonance Imaging Perfusion-Diffusion Mismatch in Ischemic Stroke
    Campbell, BCV ; Christensen, S ; Levi, CR ; Desmond, PM ; Donnan, GA ; Davis, SM ; Parsons, MW (LIPPINCOTT WILLIAMS & WILKINS, 2012-10)
    BACKGROUND AND PURPOSE: Perfusion imaging has the potential to select patients most likely to respond to thrombolysis. We tested the correspondence of computed tomography perfusion (CTP)-derived mismatch with contemporaneous perfusion-diffusion magnetic resonance imaging (MRI). METHODS: Acute ischemic stroke patients 3 to 6 hours after onset had CTP and perfusion-diffusion MRI within 1 hour, before thrombolysis. Relative cerebral blood flow (relCBF) and time to peak of the deconvolved tissue residue function (Tmax) were calculated. The diffusion lesion (diffusion-weighted imaging) was registered to the CTP slabs and manually outlined to its maximal visual extent. Volumetric accuracy of CT-relCBF infarct core (compared with diffusion-weighted imaging) was tested. To reduce false-positive low CBF regions, relCBF core was restricted to voxels within a relative time-to-peak (relTTP) >4 seconds for lesion region of interest. The MR-Tmax >6 seconds perfusion lesion was automatically segmented and registered to CTP. Receiver-operating characteristic analysis determined the optimal CT-Tmax threshold to match MR-Tmax >6 seconds. Agreement of these CT parameters with MR perfusion-diffusion mismatch in coregistered slabs was assessed (mismatch ratio >1.2, absolute mismatch >10 mL, infarct core <70 mL). RESULTS: In analysis of 49 patients (mean onset to CT, 213 minutes; mean CT to MR, 31 minutes), constraining relCBF <31% within the automated relTTP perfusion lesion region of interest reduced the median magnitude of volumetric error (vs diffusion-weighted imaging) from 47.5 mL to 15.8 mL (P<0.001). The optimal CT-Tmax threshold to match MR-Tmax >6 seconds was 6.2 seconds (95% confidence interval, 5.6-7.3 seconds; sensitivity, 91%; specificity, 70%; area under the curve, 0.87). Using CT-Tmax >6 seconds "penumbra" and relTTP-constrained relCBF "core," CT-based and MRI-based mismatch status was concordant in 90% (kappa=0.80). CONCLUSIONS: Quantitative CTP mismatch classification using relCBF and Tmax is similar to perfusion-diffusion MRI. The greater accessibility of CTP may facilitate generalizability of mismatch-based selection in clinical practice and trials.