Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Expression of LMO4 and outcome in pancreatic ductal adenocarcinoma
    Murphy, NC ; Scarlett, CJ ; Kench, JG ; Sum, EYM ; Segara, D ; Colvin, EK ; Susanto, J ; Cosman, PH ; Lee, C-S ; Musgrove, EA ; Sutherland, RL ; Lindeman, GJ ; Henshall, SM ; Visvader, JE ; Biankin, AV (NATURE PUBLISHING GROUP, 2008-02-12)
    Identification of a biomarker of prognosis and response to therapy that can be assessed preoperatively would significantly improve overall outcomes for patients with pancreatic cancer. In this study, patients whose tumours exhibited high LMO4 expression had a significant survival advantage following operative resection, whereas the survival of those patients whose tumours had low or no LMO4 expression was not significantly different when resection was compared with operative biopsy alone.
  • Item
    No Preview Available
    The future of mammary stem cell biology:: the power of in vivo transplants
    Lindeman, GJ ; Visvader, JE ; Smalley, MJ ; Eaves, CJ (BIOMED CENTRAL LTD, 2008)
  • Item
    Thumbnail Image
    Resident macrophages influence stem cell activity in the mammary gland
    Gyorki, DE ; Asselin-Labat, M-L ; van Rooijen, N ; Lindeman, GJ ; Visvader, JE (BMC, 2009)
    INTRODUCTION: Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells influence have not been determined. Here we have explored a role for macrophages in regulating mammary stem cell (MaSC) activity, by assessing the ability of MaSCs to reconstitute a mammary gland in a macrophage-depleted fat pad. METHODS: Two different in vivo models were used to deplete macrophages from the mouse mammary fat pad, allowing us to examine the effect of macrophage deficiency on the mammary repopulating activity of MaSCs. Both the Csf1op/op mice and clodronate liposome-mediated ablation models entailed transplantation studies using the MaSC-enriched population. RESULTS: We show that mammary repopulating ability is severely compromised when the wild-type MaSC-enriched subpopulation is transplanted into Csf1op/op fat pads. In reciprocal experiments, the MaSC-enriched subpopulation from Csf1op/op glands had reduced regenerative capacity in a wild-type environment. Utilizing an alternative strategy for selective depletion of macrophages from the mammary gland, we demonstrate that co-implantation of the MaSC-enriched subpopulation with clodronate-liposomes leads to a marked decrease in repopulating frequency and outgrowth potential. CONCLUSIONS: Our data reveal a key role for mammary gland macrophages in supporting stem/progenitor cell function and suggest that MaSCs require macrophage-derived factors to be fully functional. Macrophages may therefore constitute part of the mammary stem cell niche.
  • Item
    Thumbnail Image
    Deaf-I regulates epithelial cell proliferation and side-branching in the mammary gland
    Barker, HE ; Smyth, GK ; Wettenhall, J ; Ward, TA ; Bath, ML ; Lindeman, GJ ; Visvader, JE (BMC, 2008-10-01)
    BACKGROUND: The transcription factor DEAF-1 has been identified as a high affinity binding partner of the LIM-only protein LMO4 that plays important roles in mammary gland development and breast cancer. Here we investigated the influence of DEAF-1 on human and mouse mammary epithelial cells both in vitro and in vivo and identified a potential target gene. RESULTS: Overexpression of DEAF-1 in human breast epithelial MCF10A cells enhanced cell proliferation in the mammary acini that develop in 3D cultures. To investigate the effects of Deaf-1 on mammary gland development and oncogenesis, we generated MMTV-Deaf-1 transgenic mice. Increased ductal side-branching was observed in young virgin mammary glands, accompanied by augmented cell proliferation. In addition, the ratio of the progesterone receptor isoforms PRA and PRB, previously implicated in regulating ductal side-branching, was altered. Affymetrix gene profiling studies revealed Rac3 as a potential target gene and quantitative RT-PCR analysis confirmed that Rac3 was upregulated by Deaf-1 in immortalized mouse mammary epithelial cells. Furthermore, MMTV-Deaf-1 transgenic mammary glands were found to have elevated levels of Rac3 mRNA, suggesting that it is a bona fide target. CONCLUSION: We have demonstrated that overexpression of Deaf-1 enhances the proliferation of human breast epithelial cells in vitro and mouse epithelial cells in vivo. Transgenic mammary glands overexpressing Deaf-1 exhibited a modest side-branching phenotype, accompanied by an increase in the number of BrdU-positive cells and a decrease in the proportion of PRA-expressing cells. Although proliferation was enhanced in Deaf-1 transgenic mice, overexpression of this gene was not sufficient to induce the formation of mammary tumors. In addition, our studies identified Rac3, encoding a small Rho-like GTPase, as a potential target of Deaf-1 in mouse mammary epithelial cells.
  • Item
    Thumbnail Image
    Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer
    Lewis, AG ; Flanagan, J ; Marsh, A ; Pupo, GM ; Mann, G ; Spurdle, AB ; Lindeman, GJ ; Visvader, JE ; Brown, MA ; Chenevix-Trench, G (BMC, 2005)
    INTRODUCTION: Mutations in known predisposition genes account for only about a third of all multiple-case breast cancer families. We hypothesized that germline mutations in FANCD2, BRIP1/BACH1, LMO4 and SFN may account for some of the unexplained multiple-case breast cancer families. METHODS: The families used in this study were ascertained through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab). Denaturing high performance liquid chromatography (DHPLC) analysis of the coding regions of these four genes was conducted in the youngest affected cases of 30 to 267 non-BRCA1/2 breast cancer families. In addition, a further 399 index cases were also screened for mutations in two functionally significant regions of the FANCD2 gene and 253 index cases were screened for two previously reported mutations in BACH1 (p. P47A and p. M299I). RESULTS: DHPLC analysis of FANCD2 identified six silent exonic variants, and a large number of intronic variants, which tagged two common haplotypes. One protein truncating variant was found in BRIP1/BACH1, as well as four missense variants, a silent change and a variant in the 3' untranslated region. No missense or splice site mutations were found in LMO4 or SFN. Analysis of the missense, silent and frameshift variants of FANCD2 and BACH1 in relatives of the index cases, and in a panel of controls, found no evidence suggestive of pathogenicity. CONCLUSION: There is no evidence that highly penetrant exonic or splice site mutations in FANCD2, BRIP1/BACH1, LMO4 or SFN contribute to familial breast cancer. Large scale association studies will be necessary to determine whether any of the polymorphisms or haplotypes identified in these genes contributes to breast cancer risk.
  • Item
    Thumbnail Image
    EpCAM and solid tumour fractionation
    VISVADER, J. ; LINDEMAN, G. ( 2009)