Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 48
  • Item
    No Preview Available
    Intermittent Preventive Therapy in Pregnancy and Incidence of Low Birth Weight in Malaria-Endemic Countries
    Cates, JE ; Westreich, D ; Unger, HW ; Bauserman, M ; Adair, L ; Cole, SR ; Meshnick, S ; Rogerson, SJ (AMER PUBLIC HEALTH ASSOC INC, 2018-03)
    OBJECTIVES: To estimate the impact of hypothetical antimalarial and nutritional interventions (which reduce the prevalence of low midupper arm circumference [MUAC]) on the incidence of low birth weight (LBW). METHODS: We analyzed data from 14 633 pregnancies from 13 studies conducted across Africa and the Western Pacific from 1996 to 2015. We calculated population intervention effects for increasing intermittent preventive therapy in pregnancy (IPTp), full coverage with bed nets, reduction in malaria infection at delivery, and reductions in the prevalence of low MUAC. RESULTS: We estimated that, compared with observed IPTp use, administering 3 or more doses of IPTp to all women would decrease the incidence of LBW from 9.9% to 6.9% (risk difference = 3.0%; 95% confidence interval = 1.7%, 4.0%). The intervention effects for eliminating malaria at delivery, increasing bed net ownership, and decreasing low MUAC prevalence were all modest. CONCLUSIONS: Increasing IPTp uptake to at least 3 doses could decrease the incidence of LBW in malaria-endemic countries. The impact of IPTp on LBW was greater than the effect of prevention of malaria, consistent with a nonmalarial effect of IPTp, measurement error, or selection bias.
  • Item
    Thumbnail Image
    Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria
    Rambhatla, JS ; Turner, L ; Manning, L ; Laman, M ; Davis, TME ; Beeson, JG ; Mueller, I ; Warrel, J ; Theander, TG ; Lavstsen, T ; Rogerson, SJ (OXFORD UNIV PRESS INC, 2019-03-01)
    BACKGROUND: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS: Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS: At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS: The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
  • Item
    Thumbnail Image
    Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children
    Chan, J-A ; Boyle, MJ ; Moore, KA ; Reiling, L ; Lin, Z ; Hasang, W ; Avril, M ; Manning, L ; Mueller, I ; Laman, M ; Davis, T ; Smith, JD ; Rogerson, SJ ; Simpson, JA ; Fowkes, FJI ; Beeson, JG (Oxford University Press, 2019-03-01)
    BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
  • Item
    Thumbnail Image
    Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)
    Arnott, A ; Mueller, I ; Ramsland, PA ; Siba, PM ; Reeder, JC ; Barry, AE ; del Portillo, HA (PUBLIC LIBRARY SCIENCE, 2013-10)
    BACKGROUND: The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. METHODOLOGY AND PRINCIPAL FINDINGS: New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. CONCLUSIONS: It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.
  • Item
    Thumbnail Image
    The Plasmodium falciparum Erythrocyte Invasion Ligand Pfrh4 as a Target of Functional and Protective Human Antibodies against Malaria
    Reiling, L ; Richards, JS ; Fowkes, FJI ; Wilson, DW ; Chokejindachai, W ; Barry, AE ; Tham, W-H ; Stubbs, J ; Langer, C ; Donelson, J ; Michon, P ; Tavul, L ; Crabb, BS ; Siba, PM ; Cowman, AF ; Mueller, I ; Beeson, JG ; Tetteh, KKA (PUBLIC LIBRARY SCIENCE, 2012-09-20)
    BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4) is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG). Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.
  • Item
    Thumbnail Image
    Multilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission
    Schultz, L ; Wapling, J ; Mueller, I ; Ntsuke, PO ; Senn, N ; Nale, J ; Kiniboro, B ; Buckee, CO ; Tavul, L ; Siba, PM ; Reeder, JC ; Barry, AE (BMC, 2010-11-23)
    BACKGROUND: The South West Pacific nation of Papua New Guinea has intense year round transmission of Plasmodium falciparum on the coast and in the low-lying inland areas. Local heterogeneity in the epidemiology of malaria suggests that parasites from multiple locations will need to be surveyed to define the population biology of P. falciparum in the region. This study describes the population genetics of P. falciparum in thirteen villages spread over four distinct catchment areas of Papua New Guinea. METHODS: Ten microsatellite loci were genotyped in 318 P. falciparum isolates from the parasite populations of two inland catchment areas, namely Wosera (number of villages (n) = 7) and Utu (n = 1) and; and two coastal catchments, Malala (n = 3) and Mugil (n = 3). Analysis of the resultant multilocus haplotypes was done at different spatial scales (2-336 km) to define the genetic diversity (allelic richness and expected heterozygosity), linkage disequilibrium and population structure throughout the study area. RESULTS: Although genetic diversity was high in all parasite populations, it was also variable with a lower allelic richness and expected heterozygosity for inland populations compared to those from the more accessible coast. This variability was not correlated with two proxy measures of transmission intensity, the infection prevalence and the proportion multiple infections. Random associations among the microsatellite loci were observed in all four catchments showing that a substantial degree of out-crossing occurs in the region. Moderate to very high levels of population structure were found but the amount of genetic differentiation (FST) did not correlate with geographic distance suggesting that parasite populations are fragmented. Population structure was also identified between villages within the Malala area, with the haplotypes of one parasite population clustering with the neighbouring catchment of Mugil. CONCLUSION: The observed population genetics of P. falciparum in this region is likely to be a consequence of the high transmission intensity combined with the isolation of human and vector populations, especially those located inland and migration of parasites via human movement into coastal populations. The variable genetic diversity and population structure of P. falciparum has important implications for malaria control strategies and warrants further fine scale sampling throughout Papua New Guinea.
  • Item
    Thumbnail Image
    Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria
    Drew, DR ; Hodder, AN ; Wilson, DW ; Foley, M ; Mueller, I ; Siba, PM ; Dent, AE ; Cowman, AF ; Beeson, JG ; Hviid, L (PUBLIC LIBRARY SCIENCE, 2012-12-05)
    Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape.
  • Item
    Thumbnail Image
    Quantifying the Importance of MSP1-19 as a Target of Growth-Inhibitory and Protective Antibodies against Plasmodium falciparum in Humans
    Wilson, DW ; Fowkes, FJI ; Gilson, PR ; Elliott, SR ; Tavul, L ; Michon, P ; Dabod, E ; Siba, PM ; Mueller, I ; Crabb, BS ; Beeson, JG ; Snounou, G (PUBLIC LIBRARY SCIENCE, 2011-11-15)
    BACKGROUND: Antibodies targeting blood stage antigens are important in protection against malaria, but the key targets and mechanisms of immunity are not well understood. Merozoite surface protein 1 (MSP1) is an abundant and essential protein. The C-terminal 19 kDa region (MSP1-19) is regarded as a promising vaccine candidate and may also be an important target of immunity. METHODOLOGY/FINDINGS: Growth inhibitory antibodies against asexual-stage parasites and IgG to recombinant MSP1-19 were measured in plasma samples from a longitudinal cohort of 206 children in Papua New Guinea. Differential inhibition by samples of mutant P. falciparum lines that expressed either the P. falciparum or P. chabaudi form of MSP1-19 were used to quantify MSP1-19 specific growth-inhibitory antibodies. The great majority of children had detectable IgG to MSP1-19, and high levels of IgG were significantly associated with a reduced risk of symptomatic P. falciparum malaria during the 6-month follow-up period. However, there was little evidence of PfMSP1-19 specific growth inhibition by plasma samples from children. Similar results were found when testing non-dialysed or dialysed plasma, or purified antibodies, or when measuring growth inhibition in flow cytometry or microscopy-based assays. Rabbit antisera generated by immunization with recombinant MSP1-19 demonstrated strong MSP1-19 specific growth-inhibitory activity, which appeared to be due to much higher antibody levels than human samples; antibody avidity was similar between rabbit antisera and human plasma. CONCLUSIONS/SIGNIFICANCE: These data suggest that MSP1-19 is not a major target of growth inhibitory antibodies and that the protective effects of antibodies to MSP1-19 are not due to growth inhibitory activity, but may instead be mediated by other mechanisms. Alternatively, antibodies to MSP1-19 may act as a marker of protective immunity.
  • Item
    Thumbnail Image
    Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines
    Terheggen, U ; Drew, DR ; Hodder, AN ; Cross, NJ ; Mugyenyi, CK ; Barry, AE ; Anders, RF ; Dutta, S ; Osier, FHA ; Elliott, SR ; Senn, N ; Stanisic, DI ; Marsh, K ; Siba, PM ; Mueller, I ; Richards, JS ; Beeson, JG (BMC, 2014-10-16)
    BACKGROUND: Polymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies. METHODS: We aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence. RESULTS: We found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis. CONCLUSIONS: Antigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.
  • Item
    Thumbnail Image
    TB incidence and characteristics in the remote gulf province of Papua New Guinea: a prospective study
    Cross, GB ; Coles, K ; Nikpour, M ; Moore, OA ; Denholm, J ; McBryde, ES ; Eisen, DP ; Warigi, B ; Carter, R ; Pandey, S ; Harino, P ; Siba, P ; Coulter, C ; Mueller, I ; Phuanukoonnon, S ; Pellegrini, M (BIOMED CENTRAL LTD, 2014-02-20)
    BACKGROUND: The incidence and characteristics of tuberculosis (TB) in remote areas of Papua New Guinea (PNG) are largely unknown. The purpose of our study was to determine the incidence of TB in the Gulf Province of PNG and describe disease characteristics, co-morbidities and drug resistance profiles that could impact on disease outcomes and transmission. METHODS: Between March 2012 and June 2012, we prospectively collected data on 274 patients presenting to Kikori Hospital with a presumptive diagnosis of TB, and on hospital inpatients receiving TB treatment during the study period. Sputum was collected for microscopy, GeneXpert analysis, culture and genotyping of isolates. RESULTS: We estimate the incidence of TB in Kikori to be 1290 per 100,000 people (95% CI 1140 to 1460) in 2012. The proportion of TB patients co-infected with HIV was 1.9%. Three of 32 TB cases tested were rifampicin resistant. Typing of nine isolates demonstrated allelic diversity and most were related to Beijing strains. CONCLUSIONS: The incidence of TB in Kikori is one of the highest in the world and it is not driven by HIV co-infection. The high incidence and the presence of rifampicin resistant warrant urgent attention to mitigate substantial morbidity in the region.