Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    Thumbnail Image
    Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria
    Rambhatla, JS ; Turner, L ; Manning, L ; Laman, M ; Davis, TME ; Beeson, JG ; Mueller, I ; Warrel, J ; Theander, TG ; Lavstsen, T ; Rogerson, SJ (OXFORD UNIV PRESS INC, 2019-03-01)
    BACKGROUND: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS: Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS: At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS: The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
  • Item
    Thumbnail Image
    Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children
    Chan, J-A ; Boyle, MJ ; Moore, KA ; Reiling, L ; Lin, Z ; Hasang, W ; Avril, M ; Manning, L ; Mueller, I ; Laman, M ; Davis, T ; Smith, JD ; Rogerson, SJ ; Simpson, JA ; Fowkes, FJI ; Beeson, JG (Oxford University Press, 2019-03-01)
    BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
  • Item
    Thumbnail Image
    Reduced risk of placental parasitemia associated with complement fixation on Plasmodium falciparum by antibodies among pregnant women
    Opi, DH ; Boyle, MJ ; McLean, ARD ; Reiling, L ; Chan, J-A ; Stanisic, D ; Ura, A ; Mueller, I ; Fowkes, FJ ; Rogerson, SJ ; Beeson, JG (BMC, 2021-08-24)
    BACKGROUND: The pathogenesis of malaria in pregnancy (MiP) involves accumulation of P. falciparum-infected red blood cells (pRBCs) in the placenta, contributing to poor pregnancy outcomes. Parasite accumulation is primarily mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). Magnitude of IgG to pRBCs has been associated with reduced risk of MiP in some studies, but associations have been inconsistent. Further, antibody effector mechanisms are poorly understood, and the role of antibody complement interactions is unknown. METHODS: Studying a longitudinal cohort of pregnant women (n=302) from a malaria-endemic province in Papua New Guinea (PNG), we measured the ability of antibodies to fix and activate complement using placental binding pRBCs and PfEMP1 recombinant domains. We determined antibody-mediated complement inhibition of pRBC binding to the placental receptor, chondroitin sulfate A (CSA), and associations with protection against placental parasitemia. RESULTS: Some women acquired antibodies that effectively promoted complement fixation on placental-binding pRBCs. Complement fixation correlated with IgG1 and IgG3 antibodies, which dominated the response. There was, however, limited evidence for membrane attack complex activity or pRBC lysis or killing. Importantly, a higher magnitude of complement fixing antibodies was prospectively associated with reduced odds of placental infection at delivery. Using genetically modified P. falciparum and recombinant PfEMP1 domains, we found that complement-fixing antibodies primarily targeted a specific variant of PfEMP1 (known as VAR2CSA). Furthermore, complement enhanced the ability of antibodies to inhibit pRBC binding to CSA, which was primarily mediated by complement C1q protein. CONCLUSIONS: These findings provide new insights into mechanisms mediating immunity to MiP and reveal potential new strategies for developing malaria vaccines that harness antibody-complement interactions.
  • Item
    Thumbnail Image
    High Antibodies to VAR2CSA in Response to Malaria Infection Are Associated With Improved Birthweight in a Longitudinal Study of Pregnant Women
    McLean, ARD ; Opi, DH ; Stanisic, D ; Cutts, JC ; Feng, G ; Ura, A ; Mueller, I ; Rogerson, SJ ; Beeson, JG ; Fowkes, FJ (FRONTIERS MEDIA SA, 2021-06-16)
    INTRODUCTION: Pregnant women have an increased risk of P. falciparum infection, which is associated with low birth weight and preterm delivery. VAR2CSA, a variant surface antigen expressed on the parasitized erythrocyte surface, enables sequestration in the placenta. Few studies have prospectively examined relationships between antibody responses during pregnancy and subsequent adverse birth outcomes, and there are limited data outside Africa. METHODS: Levels of IgG against VAR2CSA domains (DBL3; DBL5) and a VAR2CSA-expressing placental-binding P. falciparum isolate (PfCS2-IE) were measured in 301 women enrolled at their first visit to antenatal care which occurred mid-pregnancy (median = 26 weeks, lower and upper quartiles = 22, 28). Associations between antibody levels at enrolment and placental infection, birthweight and estimated gestational age at delivery were assessed by linear and logistic regression with adjustment for confounders. For all outcomes, effect modification by gravidity and peripheral blood P. falciparum infection at enrolment was assessed. RESULTS: Among women who had acquired P. falciparum infection at enrolment, those with higher levels of VAR2CSA antibodies (75th percentile) had infants with higher mean birthweight (estimates varied from +35g to +149g depending on antibody response) and reduced adjusted odds of placental infection (aOR estimates varied from 0.17 to 0.80), relative to women with lower levels (25th percentile) of VAR2CSA antibodies. However, among women who had not acquired an infection at enrolment, higher VAR2CSA antibodies were associated with increased odds of placental infection (aOR estimates varied from 1.10 to 2.24). CONCLUSIONS: When infected by mid-pregnancy, a better immune response to VAR2CSA-expressing parasites may contribute to protecting against adverse pregnancy outcomes.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
  • Item
    Thumbnail Image
    Sulphadoxine-pyrimethamine plus azithromycin may improve birth outcomes through impacts on inflammation and placental angiogenesis independent of malarial infection
    Unger, HW ; Hansa, AP ; Buffet, C ; Hasang, W ; Teo, A ; Randall, L ; Ome-Kaius, M ; Karl, S ; Anuan, AA ; Beeson, JG ; Mueller, I ; Stock, SJ ; Rogerson, SJ (NATURE PUBLISHING GROUP, 2019-02-19)
    Intermittent preventive treatment with sulphadoxine-pyrimethamine (SP) and SP plus azithromycin (SPAZ) reduces low birthweight (<2,500 g) in women without malarial and reproductive tract infections. This study investigates the impact of SPAZ on associations between plasma biomarkers of inflammation and angiogenesis and adverse pregnancy outcomes in 2,012 Papua New Guinean women. Concentrations of C-reactive protein (CRP), α-1-acid glycoprotein (AGP), soluble endoglin (sEng), soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) were measured at enrolment and delivery in a trial comparing SPAZ to SP plus chloroquine (SPCQ). At antenatal enrolment higher CRP (adjusted odds ratio 1.52; 95% confidence interval [CI] 1.03-2.25), sEng (4.35; 1.77, 10.7) and sFlt1 (2.21; 1.09, 4.48) were associated with preterm birth, and higher sEng with low birthweight (1.39; 1.11,3.37), in SPCQ recipients only. Increased enrolment sFlt1:PlGF ratios associated with LBW in all women (1.46; 1.11, 1.90). At delivery, higher AGP levels were strongly associated with low birthweight, preterm birth and small-for-gestational age babies in the SPCQ arm only. Restricting analyses to women without malaria infection did not materially alter these relationships. Women receiving SPAZ had lower delivery AGP and CRP levels (p < 0.001). SPAZ may protect against adverse pregnancy outcomes by reducing inflammation and preventing its deleterious consequences, including dysregulation of placental angiogenesis, in women with and without malarial infection.
  • Item
    Thumbnail Image
    Characterization of VAR2CSA-deficient Plasmodium falciparum-infected erythrocytes selected for adhesion to the BeWo placental cell line
    Yosaatmadja, F ; Andrews, KT ; Duffy, MF ; Brown, GV ; Beeson, JG ; Rogerson, SJ (BMC, 2008-03-26)
    BACKGROUND: Malaria in pregnancy is characterized by accumulation of infected erythrocytes (IE) in the placenta. The key ligand identified as mediating this process is a Plasmodium falciparum erythrocyte membrane protein 1 family member, termed VAR2CSA. VAR2CSA appears to be the main ligand responsible for adhesion to chondroitin sulphate A (CSA). Whether other PfEMP1 molecules can also mediate placental adhesion, independent of CSA binding, is unclear. METHODS: The parasite line CS2 carrying a disrupted var2csa gene (CS2KO) was selected for adhesion to the BeWo choriocarcinoma cell line, which has been proposed as a model for placental malaria. The selected and control IE were tested for adhesion to placental sections and flow cytometry was used to measure recognition of IE by three serum sets from malaria-exposed men and women. RESULTS: Wild-type CS2 adhere to BeWo and placental tissue via CSA. CS2KO IE were successfully selected for adhesion to BeWo, and adhered by a CSA-independent mechanism. They bound to immobilized ICAM-1 and CD36. BeWo-selected CS2KO bound at moderate levels to placental sections, but most binding was to placental villi rather than to the syncytiotrophoblast to which IE adherence occurs in vivo. This binding was inhibited by a blocking antibody to CD36 but not to ICAM-1. As expected, sera from malaria-exposed adults recognized CS2 IE in a gender and parity dependent manner. In one serum set, there was a similar but less pronounced pattern of antibody binding to selected CS2KO IE, but this was not seen in two others. One var gene, It4var19, was particularly abundant in the selected line and was detected as full length transcripts in BeWo-selected IE, but not unselected CS2KO. CONCLUSION: This study suggests that IE with characteristics similar to the CS2KO have a limited role in the pathogenesis of placental malaria. VAR2CSA appear to be the major ligand for placental adhesion, and could be the basis for a vaccine against pregnancy malaria.
  • Item
    Thumbnail Image
    Using an Improved Phagocytosis Assay to Evaluate the Effect of HIV on Specific Antibodies to Pregnancy-Associated Malaria
    Ataide, R ; Hasang, W ; Wilson, DW ; Beeson, JG ; Mwapasa, V ; Molyneux, ME ; Meshnick, SR ; Rogerson, SJ ; Snounou, G (PUBLIC LIBRARY SCIENCE, 2010-05-25)
    BACKGROUND: Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. METHODOLOGY/FINDINGS: Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. CONCLUSIONS/SIGNIFICANCE: This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.
  • Item
    Thumbnail Image
    Intermittent Preventive Treatment to Reduce the Burden of Malaria in Children: New Evidence on Integration and Delivery
    Beeson, JG ; Rogerson, SJ ; Mueller, I ; Richards, JS ; Fowkes, FJI (PUBLIC LIBRARY SCIENCE, 2011-02)
    James Beeson and colleagues discuss three new studies in PLoS Medicine that provide valuable evidence on how to delivery and integrate intermittent preventive reatment for malaria in children (IPTc).