Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    CHONDROITIN SULFATE A IS A CELL-SURFACE RECEPTOR FOR PLASMODIUM-FALCIPARUM-INFECTED ERYTHROCYTES
    ROGERSON, SJ ; CHAIYAROJ, SC ; NG, K ; REEDER, JC ; BROWN, GV (ROCKEFELLER UNIV PRESS, 1995-07-01)
    Adherence of Plasmodium falciparum-infected erythrocytes to cerebral postcapillary venular endothelium is believed to be a critical step in the development of cerebral malaria. Some of the possible receptors mediating adherence have been identified, but the process of adherence in vivo is poorly understood. We investigated the role of carbohydrate ligands in adherence, and we identified chondroitin sulfate (CS) as a specific receptor for P. falciparum-infected erythrocytes. Parasitized cells bound to Chinese hamster ovary (CHO) cells and C32 melanoma cells in a chondroitin sulfate-dependent manner, whereas glycosylation mutants lacking chondroitin sulfate A (CSA) supported little or no binding. Chondroitinase treatment of wild-type CHO cells reduced binding by up to 90%. Soluble CSA inhibited binding to CHO cells by 99.2 +/- 0.2% at 10 mg/ml and by 72.5 +/- 3.8% at 1 mg/ml, whereas a range of other glycosaminoglycans such as heparan sulfate had no effect. Parasite lines selected for increased binding to CHO cells and most patient isolates bound specifically to immobilized CSA. We conclude that P. falciparum can express or expose proteins at the surface of the infected erythrocyte that mediate specific binding to CSA. This mechanism of adherence may contribute to the pathogenesis of P. falciparum malaria, but has wider implications as an example of an infectious agent with the capacity to bind specifically to cell-associated or immobilized CS.
  • Item
    Thumbnail Image
    KNOB-INDEPENDENT CYTOADHERENCE OF PLASMODIUM-FALCIPARUM TO THE LEUKOCYTE DIFFERENTIATION ANTIGEN CD36
    BIGGS, BA ; GOOZE, L ; WYCHERLEY, K ; WILKINSON, D ; BOYD, AW ; FORSYTH, KP ; EDELMAN, L ; BROWN, GV ; LEECH, JH (ROCKEFELLER UNIV PRESS, 1990-06-01)
    The survival of Plasmodium falciparum-infected erythrocytes is enhanced by the sequestration of mature trophozoites and schizonts from the peripheral circulation. Cytoadherence of infected erythrocytes in vivo is associated with the presence of knobs on the erythrocyte surface, but we and others have shown recently that cytoadherence to C32 melanoma cells may occur in vitro in the absence of knobs. We show here that a knobless clone of P. falciparum adheres to the leukocyte differentiation antigen, CD36, suggesting that binding to CD36 is independent of the presence of knobs on the surface of the infected erythrocyte. This clone showed little cytoadherence to immobilized thrombospondin or to endothelial cells expressing the intercellular adhesion molecule 1. Furthermore, an Mr approximately 300-kD trypsin-sensitive protein doublet was immunoprecipitated from knobless trophozoite-infected erythrocytes. Finding a P. falciparum erythrocyte membrane protein 1 (PfEMP1)-like molecule on these infected erythrocytes is consistent with a role for PfEMP1 in cytoadherence to CD36 and C32 melanoma cells.