Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    Thumbnail Image
    Distress and unmet needs during treatment and quality of life in early cancer survivorship: A longitudinal study of haematological cancer patients
    Oberoi, DV ; White, VM ; Seymour, JF ; Prince, HM ; Harrison, S ; Jefford, M ; Winship, I ; Hill, DJ ; Bolton, D ; Millar, J ; Doo, NW ; Kay, A ; Giles, G (WILEY, 2017-11)
    OBJECTIVE: To examine the influence of anxiety, depression and unmet supportive care needs on future quality of life (QoL) in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) patients. METHODS: Multiple myeloma and DLBCL patients recruited through the population-based Victorian Cancer Registry. Data were collected through two telephone interviews: (T1) on average 7 months postdiagnosis, (T2) average 8 months later. QoL was examined at T2 using the Functional Assessment of Cancer Therapy (FACT-G) scale. The Hospital Anxiety and Depression Scale measured anxiety and depression, and the Supportive Care Needs Survey measured unmet needs at T1. Multivariate linear regression examined associations between QoL subscales (physical, emotional, social and functional well-being and overall QoL) and T1 anxiety, depression and unmet needs. RESULTS: Except physical well-being, all other QoL subscales and overall QoL were significantly associated with T1 anxiety. All QoL subscales and overall QoL were significantly associated with T1 depression. Only patient care needs were associated with physical and social well-being and overall QoL. CONCLUSION: Anxiety, depression and patient care unmet needs during treatment are associated with diminished physical and emotional well-being in the following months. Psychological distress and unmet supportive care needs experienced during treatment should be addressed to maximise future QoL.
  • Item
    Thumbnail Image
    Trends in the surgical management of stage 1 renal cell carcinoma: findings from a population-based study
    White, V ; Marco, DJT ; Bolton, D ; Davis, ID ; Jefford, M ; Hill, D ; Prince, HM ; Millar, JL ; Winship, IM ; Coory, M ; Giles, GG (WILEY, 2017-11)
    OBJECTIVES: To determine whether the use of nephron-sparing surgery (NSS) for treatment of stage 1 renal cell carcinoma (RCC) changed between 2009 and the end of 2013 in Australia. PATIENTS AND METHODS: All adult cases of RCC diagnosed in 2009, 2012 and 2013 were identified through the population-based Victorian Cancer Registry. For each identified patient, trained data-abstractors attended treating hospitals or clinician rooms to extract tumour and treatment data through medical record review. Multivariable logistic regression analyses were carried out to examine the significance of change in use of NSS over time, after adjusting for potential confounders. RESULTS: A total of 1 836 patients with RCC were identified. Of these, the proportion of cases with stage 1 tumours was 64% in 2009, 66% in 2012 and 69% in 2013. For T1a tumours, the proportion of patients residing in metropolitan areas receiving NSS increased from 43% in 2009 to 58% in 2012 (P < 0.05), and 69% in 2013 (P < 0.05). For patients residing in non-metropolitan areas, the proportion receiving NSS increased from 27% in 2009 to 49% in 2012, and 61% in 2013 (P < 0.01). Univariable logistic regression showed patients with moderate (odds ratio [OR] 0.57, 95% confidence interval [CI] 0.35-0.94) or severe comorbidities (OR 0.58, 95% CI 0.33-0.99), residing in non-metropolitan areas (OR 0.65, 95% CI 0.47-0.90), were less likely to be treated by NSS, while those attending high-volume hospitals (≥30 cases/year: OR 1.79, 95% CI 1.21-2.65) and those with higher socio-economic status (OR 1.45, 95% CI 1.02-2.07) were more likely to be treated by NSS. In multivariable analyses, patients with T1a tumours in 2012 (OR 2.00, 95% CI 1.34-2.97) and 2013 (OR 3.15, 95% CI 2.13-4.68) were more likely to be treated by NSS than those in 2009. For T1b tumours, use of NSS increased from 8% in 2009 to 20% in 2013 (P < 0.05). CONCLUSION: This population-based study of the management of T1 renal tumours in Australia found that the use of NSS increased over the period 2009 to 2013. Between 2009 and 2013 clinical practice for the treatment of small renal tumours in Australia has increasingly conformed to international guidelines.
  • Item
    No Preview Available
    Identification of six new susceptibility loci for invasive epithelial ovarian cancer
    Kuchenbaecker, KB ; Ramus, SJ ; Tyrer, J ; Lee, A ; Shen, HC ; Beesley, J ; Lawrenson, K ; McGuffog, L ; Healey, S ; Lee, JM ; Spindler, TJ ; Lin, YG ; Pejovic, T ; Bean, Y ; Li, Q ; Coetzee, S ; Hazelett, D ; Miron, A ; Southey, M ; Terry, MB ; Goldgar, DE ; Buys, SS ; Janavicius, R ; Dorfling, CM ; van Rensburg, EJ ; Neuhausen, SL ; Ding, YC ; Hansen, TVO ; Jonson, L ; Gerdes, A-M ; Ejlertsen, B ; Barrowdale, D ; Dennis, J ; Benitez, J ; Osorio, A ; Garcia, MJ ; Komenaka, I ; Weitzel, JN ; Ganschow, P ; Peterlongo, P ; Bernard, L ; Viel, A ; Bonanni, B ; Peissel, B ; Manoukian, S ; Radice, P ; Papi, L ; Ottini, L ; Fostira, F ; Konstantopoulou, I ; Garber, J ; Frost, D ; Perkins, J ; Platte, R ; Ellis, S ; Godwin, AK ; Schmutzler, RK ; Meindl, A ; Engel, C ; Sutter, C ; Sinilnikova, OM ; Damiola, F ; Mazoyer, S ; Stoppa-Lyonnet, D ; Claes, K ; De Leeneer, K ; Kirk, J ; Rodriguez, GC ; Piedmonte, M ; O'Malley, DM ; de la Hoya, M ; Caldes, T ; Aittomaeki, K ; Nevanlinna, H ; Collee, JM ; Rookus, MA ; Oosterwijk, JC ; Tihomirova, L ; Tung, N ; Hamann, U ; Isaccs, C ; Tischkowitz, M ; Imyanitov, EN ; Caligo, MA ; Campbell, IG ; Hogervorst, FBL ; Olah, E ; Diez, O ; Blanco, I ; Brunet, J ; Lazaroso, C ; Angel Pujana, M ; Jakubowska, A ; Gronwald, J ; Lubinski, J ; Sukiennicki, G ; Barkardottir, RB ; Plante, M ; Simard, J ; Soucy, P ; Montagna, M ; Tognazzo, S ; Teixeira, MR ; Pankratz, VS ; Wang, X ; Lindor, N ; Szabo, CI ; Kauff, N ; Vijai, J ; Aghajanian, CA ; Pfeiler, G ; Berger, A ; Singer, CF ; Tea, M-K ; Phelan, CM ; Greene, MH ; Mai, PL ; Rennert, G ; Mulligan, AM ; Tchatchou, S ; Andrulis, IL ; Glendon, G ; Toland, AE ; Jensen, UB ; Kruse, TA ; Thomassen, M ; Bojesen, A ; Zidan, J ; Friedman, E ; Laitman, Y ; Soller, M ; Liljegren, A ; Arver, B ; Einbeigi, Z ; Stenmark-Askmalm, M ; Olopade, OI ; Nussbaum, RL ; Rebbeck, TR ; Nathanson, KL ; Domchek, SM ; Lu, KH ; Karlan, BY ; Walsh, C ; Lester, J ; Hein, A ; Ekici, AB ; Beckmann, MW ; Fasching, PA ; Lambrechts, D ; Van Nieuwenhuysen, E ; Vergote, I ; Lambrechts, S ; Dicks, E ; Doherty, JA ; Wicklund, KG ; Rossing, MA ; Rudolph, A ; Chang-Claude, J ; Wang-Gohrke, S ; Eilber, U ; Moysich, KB ; Odunsi, K ; Sucheston, L ; Lele, S ; Wilkens, LR ; Goodman, MT ; Thompson, PJ ; Shvetsov, YB ; Runnebaum, IB ; Duerst, M ; Hillemanns, P ; Doerk, T ; Antonenkova, N ; Bogdanova, N ; Leminen, A ; Pelttari, LM ; Butzow, R ; Modugno, F ; Kelley, JL ; Edwards, RP ; Ness, RB ; du Bois, A ; Heitz, F ; Schwaab, I ; Harter, P ; Matsuo, K ; Hosono, S ; Orsulic, S ; Jensen, A ; Kjaer, SK ; Hogdall, E ; Hasmad, HN ; Azmi, MAN ; Teo, S-H ; Woo, Y-L ; Fridley, BL ; Goode, EL ; Cunningham, JM ; Vierkant, RA ; Bruinsma, F ; Giles, GG ; Liang, D ; Hildebrandt, MAT ; Wu, X ; Levine, DA ; Bisogna, M ; Berchuck, A ; Iversen, ES ; Schildkraut, JM ; Concannon, P ; Weber, RP ; Cramer, DW ; Terry, KL ; Poole, EM ; Tworoger, SS ; Bandera, EV ; Orlow, I ; Olson, SH ; Krakstad, C ; Salvesen, HB ; Tangen, IL ; Bjorge, L ; van Altena, AM ; Aben, KKH ; Kiemeney, LA ; Massuger, LFAG ; Kellar, M ; Brooks-Wilson, A ; Kelemen, LE ; Cook, LS ; Le, ND ; Cybulski, C ; Yang, H ; Lissowska, J ; Brinton, LA ; Wentzensen, N ; Hogdall, C ; Lundvall, L ; Nedergaard, L ; Baker, H ; Song, H ; Eccles, D ; McNeish, I ; Paul, J ; Carty, K ; Siddiqui, N ; Glasspool, R ; Whittemore, AS ; Rothstein, JH ; McGuire, V ; Sieh, W ; Ji, B-T ; Zheng, W ; Shu, X-O ; Gao, Y-T ; Rosen, B ; Risch, HA ; McLaughlin, JR ; Narod, SA ; Monteiro, AN ; Chen, A ; Lin, H-Y ; Permuth-Wey, J ; Sellers, TA ; Tsai, Y-Y ; Chen, Z ; Ziogas, A ; Anton-Culver, H ; Gentry-Maharaj, A ; Menon, U ; Harrington, P ; Lee, AW ; Wu, AH ; Pearce, CL ; Coetzee, G ; Pike, MC ; Dansonka-Mieszkowska, A ; Timorek, A ; Rzepecka, IK ; Kupryjanczyk, J ; Freedman, M ; Noushmehr, H ; Easton, DF ; Offit, K ; Couch, FJ ; Gayther, S ; Pharoah, PP ; Antoniou, AC ; Chenevix-Trench, G (NATURE PORTFOLIO, 2015-02)
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
  • Item
    Thumbnail Image
    Morphological predictors of BRCA1 germline mutations in young women with breast cancer
    Southey, MC ; Ramus, SJ ; Dowty, JG ; Smith, LD ; Tesoriero, AA ; Wong, EEM ; Dite, GS ; Jenkins, MA ; Byrnes, GB ; Winship, I ; Phillips, K-A ; Giles, GG ; Hopper, JL (NATURE PUBLISHING GROUP, 2011-03-15)
    BACKGROUND: Knowing a young woman with newly diagnosed breast cancer has a germline BRCA1 mutation informs her clinical management and that of her relatives. We sought an optimal strategy for identifying carriers using family history, breast cancer morphology and hormone receptor status data. METHODS: We studied a population-based sample of 452 Australian women with invasive breast cancer diagnosed before age 40 years for whom we conducted extensive germline mutation testing (29 carried a BRCA1 mutation) and a systematic pathology review, and collected three-generational family history and tumour ER and PR status. Predictors of mutation status were identified using multiple logistic regression. Areas under receiver operator characteristic (ROC) curves were estimated using five-fold stratified cross-validation. RESULTS: The probability of being a BRCA1 mutation carrier increased with number of selected histology features even after adjusting for family history and ER and PR status (P<0.0001). From the most parsimonious multivariate model, the odds ratio for being a carrier were: 9.7 (95% confidence interval: 2.6-47.0) for trabecular growth pattern (P=0.001); 7.8 (2.7-25.7) for mitotic index over 50 mitoses per 10 high-powered field (P=0.0003); and 2.7 (1.3-5.9) for each first-degree relative with breast cancer diagnosed before age 60 years (P=0.01).The area under the ROC curve was 0.87 (0.83-0.90). CONCLUSION: Pathology review, with attention to a few specific morphological features of invasive breast cancers, can identify almost all BRCA1 germline mutation carriers among women with early-onset breast cancer without taking into account family history.
  • Item
    Thumbnail Image
    A PALB2 mutation associated with high risk of breast cancer
    Southey, MC ; Teo, ZL ; Dowty, JG ; Odefrey, FA ; Park, DJ ; Tischkowitz, M ; Sabbaghian, N ; Apicella, C ; Byrnes, GB ; Winship, I ; Baglietto, L ; Giles, GG ; Goldgar, DE ; Foulkes, WD ; Hopper, JL (BMC, 2010)
    NTRODUCTION: As a group, women who carry germline mutations in partner and localizer of breast cancer 2 susceptibility protein (PALB2) are at increased risk of breast cancer. Little is known about by how much or whether risk differs by mutation or family history, owing to the paucity of studies of cases unselected for family history. METHODS: We screened 1,403 case probands for PALB2 mutations in a population-based study of Australian women with invasive breast cancer stratified by age at onset. The age-specific risk of breast cancer was estimated from the cancer histories of first- and second-degree relatives of mutation-carrying probands using a modified segregation analysis that included a polygenic modifier and was conditioned on the carrier case proband. Further screening for PALB2 c.3113G > A (W1038X) was conducted for 779 families with multiple cases of breast cancer ascertained through family cancer clinics in Australia and New Zealand and 764 population-based controls. RESULTS: We found five independent case probands in the population-based sample with the protein-truncating mutation PALB2 c.3113G > A (W1038X); 2 of 695 were diagnosed before age 40 years and 3 of 708 were diagnosed when between ages 40 and 59 years. Both of the two early-onset carrier case probands had very strong family histories of breast cancer. Further testing found that the mutation segregated with breast cancer in these families. No c.3113G > A (W1038X) carriers were found in 764 population-based unaffected controls. The hazard ratio was estimated to be 30.1 (95% confidence interval (CI), 7.5 to 120; P < 0.0001), and the corresponding cumulative risk estimates were 49% (95% CI, 15 to 93) to age 50 and 91% (95% CI, 44 to 100) to age 70. We found another eight families carrying this mutation in 779 families with multiple cases of breast cancer ascertained through family cancer clinics. CONCLUSIONS: The PALB2 c.3113G > A mutation appears to be associated with substantial risks of breast cancer that are of clinical relevance.
  • Item
    Thumbnail Image
    PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS
    Southey, MC ; Goldgar, DE ; Winqvist, R ; Pylkas, K ; Couch, F ; Tischkowitz, M ; Foulkes, WD ; Dennis, J ; Michailidou, K ; van Rensburg, EJ ; Heikkinen, T ; Nevanlinna, H ; Hopper, JL ; Doerk, T ; Claes, KBM ; Reis-Filho, J ; Teo, ZL ; Radice, P ; Catucci, I ; Peterlongo, P ; Tsimiklis, H ; Odefrey, FA ; Dowty, JG ; Schmidt, MK ; Broeks, A ; Hogervorst, FB ; Verhoef, S ; Carpenter, J ; Clarke, C ; Scott, RJ ; Fasching, PA ; Haeberle, L ; Ekici, AB ; Beckmann, MW ; Peto, J ; dos-Santos-Silva, I ; Fletcher, O ; Johnson, N ; Bolla, MK ; Sawyer, EJ ; Tomlinson, I ; Kerin, MJ ; Miller, N ; Marme, F ; Burwinkel, B ; Yang, R ; Guenel, P ; Therese, T ; Menegaux, F ; Sanchez, M ; Bojesen, S ; Nielsen, SF ; Flyger, H ; Benitez, J ; Pilar Zamora, M ; Arias Perez, JI ; Menendez, P ; Anton-Culver, H ; Neuhausen, S ; Ziogas, A ; Clarke, CA ; Brenner, H ; Arndt, V ; Stegmaier, C ; Brauch, H ; Bruening, T ; Ko, Y-D ; Muranen, TA ; Aittomaki, K ; Blomqvist, C ; Bogdanova, NV ; Antonenkova, NN ; Lindblom, A ; Margolin, S ; Mannermaa, A ; Kataja, V ; Kosma, V-M ; Hartikainen, JM ; Spurdle, AB ; Wauters, E ; Smeets, D ; Beuselinck, B ; Floris, G ; Chang-Claude, J ; Rudolph, A ; Seibold, P ; Flesch-Janys, D ; Olson, JE ; Vachon, C ; Pankratz, VS ; McLean, C ; Haiman, CA ; Henderson, BE ; Schumacher, F ; Le Marchand, L ; Kristensen, V ; Alnaes, GG ; Zheng, W ; Hunter, DJ ; Lindstrom, S ; Hankinson, SE ; Kraft, P ; Andrulis, I ; Knight, JA ; Glendon, G ; Mulligan, AM ; Jukkola-Vuorinen, A ; Grip, M ; Kauppila, S ; Devilee, P ; Tollenaar, RAEM ; Seynaeve, C ; Hollestelle, A ; Garcia-Closas, M ; Figueroa, J ; Chanock, SJ ; Lissowska, J ; Czene, K ; Darabi, H ; Eriksson, M ; Eccles, DM ; Rafiq, S ; Tapper, WJ ; Gerty, SM ; Hooning, MJ ; Martens, JWM ; Collee, JM ; Tilanus-Linthorst, M ; Hall, P ; Li, J ; Brand, JS ; Humphreys, K ; Cox, A ; Reed, MWR ; Luccarini, C ; Baynes, C ; Dunning, AM ; Hamann, U ; Torres, D ; Ulmer, HU ; Ruediger, T ; Jakubowska, A ; Lubinski, J ; Jaworska, K ; Durda, K ; Slager, S ; Toland, AE ; Ambrosone, CB ; Yannoukakos, D ; Swerdlow, A ; Ashworth, A ; Orr, N ; Jones, M ; Gonzalez-Neira, A ; Pita, G ; Rosario Alonso, M ; Alvarez, N ; Herrero, D ; Tessier, DC ; Vincent, D ; Bacot, F ; Simard, J ; Dumont, M ; Soucy, P ; Eeles, R ; Muir, K ; Wiklund, F ; Gronberg, H ; Schleutker, J ; Nordestgaard, BG ; Weischer, M ; Travis, RC ; Neal, D ; Donovan, JL ; Hamdy, FC ; Khaw, K-T ; Stanford, JL ; Blot, WJ ; Thibodeau, S ; Schaid, DJ ; Kelley, JL ; Maier, C ; Kibel, AS ; Cybulski, C ; Cannon-Albright, L ; Butterbach, K ; Park, J ; Kaneva, R ; Batra, J ; Teixeira, MR ; Kote-Jarai, Z ; Al Olama, AA ; Benlloch, S ; Renner, SP ; Hartmann, A ; Hein, A ; Ruebner, M ; Lambrechts, D ; Van Nieuwenhuysen, E ; Vergote, I ; Lambretchs, S ; Doherty, JA ; Rossing, MA ; Nickels, S ; Eilber, U ; Wang-Gohrke, S ; Odunsi, K ; Sucheston-Campbell, LE ; Friel, G ; Lurie, G ; Killeen, JL ; Wilkens, LR ; Goodman, MT ; Runnebaum, I ; Hillemanns, PA ; Pelttari, LM ; Butzow, R ; Modugno, F ; Edwards, RP ; Ness, RB ; Moysich, KB ; du Bois, A ; Heitz, F ; Harter, P ; Kommoss, S ; Karlan, BY ; Walsh, C ; Lester, J ; Jensen, A ; Kjaer, SK ; Hogdall, E ; Peissel, B ; Bonanni, B ; Bernard, L ; Goode, EL ; Fridley, BL ; Vierkant, RA ; Cunningham, JM ; Larson, MC ; Fogarty, ZC ; Kalli, KR ; Liang, D ; Lu, KH ; Hildebrandt, MAT ; Wu, X ; Levine, DA ; Dao, F ; Bisogna, M ; Berchuck, A ; Iversen, ES ; Marks, JR ; Akushevich, L ; Cramer, DW ; Schildkraut, J ; Terry, KL ; Poole, EM ; Stampfer, M ; Tworoger, SS ; Bandera, EV ; Orlow, I ; Olson, SH ; Bjorge, L ; Salvesen, HB ; van Altena, AM ; Aben, KKH ; Kiemeney, LA ; Massuger, LFAG ; Pejovic, T ; Bean, Y ; Brooks-Wilson, A ; Kelemen, LE ; Cook, LS ; Le, ND ; Grski, B ; Gronwald, J ; Menkiszak, J ; Hogdall, CK ; Lundvall, L ; Nedergaard, L ; Engelholm, SA ; Dicks, E ; Tyrer, J ; Campbell, I ; McNeish, I ; Paul, J ; Siddiqui, N ; Glasspool, R ; Whittemore, AS ; Rothstein, JH ; McGuire, V ; Sieh, W ; Cai, H ; Shu, X-O ; Teten, RT ; Sutphen, R ; McLaughlin, JR ; Narod, SA ; Phelan, CM ; Monteiro, AN ; Fenstermacher, D ; Lin, H-Y ; Permuth, JB ; Sellers, TA ; Chen, YA ; Tsai, Y-Y ; Chen, Z ; Gentry-Maharaj, A ; Gayther, SA ; Ramus, SJ ; Menon, U ; Wu, AH ; Pearce, CL ; Van den Berg, D ; Pike, MC ; Dansonka-Mieszkowska, A ; Plisiecka-Halasa, J ; Moes-Sosnowska, J ; Kupryjanczyk, J ; Pharoah, PDP ; Song, H ; Winship, I ; Chenevix-Trench, G ; Giles, GG ; Tavtigian, SV ; Easton, DF ; Milne, RL (BMJ PUBLISHING GROUP, 2016-12)
    BACKGROUND: The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. METHODS: We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. RESULTS: For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. CONCLUSIONS: This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.
  • Item
    Thumbnail Image
    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
    Mavaddat, N ; Michailidou, K ; Dennis, J ; Lush, M ; Fachal, L ; Lee, A ; Tyrer, JP ; Chen, T-H ; Wang, Q ; Bolla, MK ; Yang, X ; Adank, MA ; Ahearn, T ; Aittomaki, K ; Allen, J ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Arndt, V ; Aronson, KJ ; Auer, PL ; Auvinen, P ; Barrdahl, M ; Freeman, LEB ; Beckmann, MW ; Behrens, S ; Benitez, J ; Bermisheva, M ; Bernstein, L ; Blomqvist, C ; Bogdanova, N ; Bojesen, SE ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Bremer, M ; Brenner, H ; Brentnall, A ; Brock, IW ; Brooks-Wilson, A ; Brucker, SY ; Bruening, T ; Burwinkel, B ; Campa, D ; Carter, BD ; Castelao, JE ; Chanock, SJ ; Chlebowski, R ; Christiansen, H ; Clarke, CL ; Collee, JM ; Cordina-Duverger, E ; Cornelissen, S ; Couch, FJ ; Cox, A ; Cross, SS ; Czene, K ; Daly, MB ; Devilee, P ; Doerk, T ; dos-Santos-Silva, I ; Dumont, M ; Durcan, L ; Dwek, M ; Eccles, DM ; Ekici, AB ; Eliassen, AH ; Ellberg, C ; Engel, C ; Eriksson, M ; Evans, DG ; Fasching, PA ; Figueroa, J ; Fletcher, O ; Flyger, H ; Foersti, A ; Fritschi, L ; Gabrielson, M ; Gago-Dominguez, M ; Gapstur, SM ; Garcia-Saenz, JA ; Gaudet, MM ; Georgoulias, V ; Giles, GG ; Gilyazova, IR ; Glendon, G ; Goldberg, MS ; Goldgar, DE ; Gonzalez-Neira, A ; Alnaes, GIG ; Grip, M ; Gronwald, J ; Grundy, A ; Guenel, P ; Haeberle, L ; Hahnen, E ; Haiman, CA ; Hakansson, N ; Hamann, U ; Hankinson, SE ; Harkness, EF ; Hart, SN ; He, W ; Hein, A ; Heyworth, J ; Hillemanns, P ; Hollestelle, A ; Hooning, MJ ; Hoover, RN ; Hopper, JL ; Howell, A ; Huang, G ; Humphreys, K ; Hunter, DJ ; Jakimovska, M ; Jakubowska, A ; Janni, W ; John, EM ; Johnson, N ; Jones, ME ; Jukkola-Vuorinen, A ; Jung, A ; Kaaks, R ; Kaczmarek, K ; Kataja, V ; Keeman, R ; Kerin, MJ ; Khusnutdinova, E ; Kiiski, J ; Knight, JA ; Ko, Y-D ; Kosma, V-M ; Koutros, S ; Kristensen, VN ; Kruger, U ; Kuehl, T ; Lambrechts, D ; Le Marchand, L ; Lee, E ; Lejbkowicz, F ; Lilyquist, J ; Lindblom, A ; Lindstrom, S ; Lissowska, J ; Lo, W-Y ; Loibl, S ; Long, J ; Lubinski, J ; Lux, MP ; MacInnis, RJ ; Maishman, T ; Makalic, E ; Kostovska, IM ; Mannermaa, A ; Manoukian, S ; Margolin, S ; Martens, JWM ; Martinez, ME ; Mavroudis, D ; McLean, C ; Meindl, A ; Menon, U ; Middha, P ; Miller, N ; Moreno, F ; Mulligan, AM ; Mulot, C ; Munoz-Garzon, VM ; Neuhausen, SL ; Nevanlinna, H ; Neven, P ; Newman, WG ; Nielsen, SF ; Nordestgaard, BG ; Norman, A ; Offit, K ; Olson, JE ; Olsson, H ; Orr, N ; Pankratz, VS ; Park-Simon, T-W ; Perez, JIA ; Perez-Barrios, C ; Peterlongo, P ; Peto, J ; Pinchev, M ; Plaseska-Karanfilska, D ; Polley, EC ; Prentice, R ; Presneau, N ; Prokofyeva, D ; Purrington, K ; Pylkas, K ; Rack, B ; Radice, P ; Rau-Murthy, R ; Rennert, G ; Rennert, HS ; Rhenius, V ; Robson, M ; Romero, A ; Ruddy, KJ ; Ruebner, M ; Saloustros, E ; Sandler, DP ; Sawyer, EJ ; Schmidt, DF ; Schmutzler, RK ; Schneeweiss, A ; Schoemaker, MJ ; Schumacher, F ; Schuermann, P ; Schwentner, L ; Scott, C ; Scott, RJ ; Seynaeve, C ; Shah, M ; Sherman, ME ; Shrubsole, MJ ; Shu, X-O ; Slager, S ; Smeets, A ; Sohn, C ; Soucy, P ; Southey, MC ; Spinelli, JJ ; Stegmaier, C ; Stone, J ; Swerdlow, AJ ; Tamimi, RM ; Tapper, WJ ; Taylor, JA ; Terry, MB ; Thoene, K ; Tollenaar, RAEM ; Tomlinson, I ; Truong, T ; Tzardi, M ; Ulmer, H-U ; Untch, M ; Vachon, CM ; van Veen, EM ; Vijai, J ; Weinberg, CR ; Wendt, C ; Whittemore, AS ; Wildiers, H ; Willett, W ; Winqvist, R ; Wolk, A ; Yang, XR ; Yannoukakos, D ; Zhang, Y ; Zheng, W ; Ziogas, A ; Clarke, C ; Balleine, R ; Baxter, R ; Braye, S ; Carpenter, J ; Dahlstrom, J ; Forbes, J ; Lee, CS ; Marsh, D ; Morey, A ; Pathmanathan, N ; Scott, R ; Simpson, P ; Spigelman, A ; Wilcken, N ; Yip, D ; Zeps, N ; Sexton, A ; Dobrovic, A ; Christian, A ; Trainer, A ; Fellows, A ; Shelling, A ; De Fazio, A ; Blackburn, A ; Crook, A ; Meiser, B ; Patterson, B ; Clarke, C ; Saunders, C ; Hunt, C ; Scott, C ; Amor, D ; Ortega, DG ; Marsh, D ; Edkins, E ; Salisbury, E ; Haan, E ; Macrea, F ; Farshid, G ; Lindeman, G ; Trench, G ; Mann, G ; Giles, G ; Gill, G ; Thorne, H ; Campbell, I ; Hickie, I ; Caldon, L ; Winship, I ; Cui, J ; Flanagan, J ; Kollias, J ; Visvader, J ; Taylor, J ; Burke, J ; Saunus, J ; Forbs, J ; Hopper, J ; Beesley, J ; Kirk, J ; French, J ; Tucker, K ; Wu, K ; Phillips, K ; Forrest, L ; Lipton, L ; Andrews, L ; Lobb, L ; Walker, L ; Kentwell, M ; Spurdle, M ; Cummings, M ; Gleeson, M ; Harris, M ; Jenkins, M ; Young, MA ; Delatycki, M ; Wallis, M ; Burgess, M ; Brown, M ; Southey, M ; Bogwitz, M ; Field, M ; Friedlander, M ; Gattas, M ; Saleh, M ; Aghmesheh, M ; Hayward, N ; Pachter, N ; Cohen, P ; Duijf, P ; James, P ; Simpson, P ; Fong, P ; Butow, P ; Williams, R ; Kefford, R ; Simard, J ; Balleine, R-M ; Dawson, S-J ; Lok, S ; O'connell, S ; Greening, S ; Nightingale, S ; Edwards, S ; Fox, S ; McLachlan, S-A ; Lakhani, S ; Dudding, T ; Antill, Y ; Sahlberg, KK ; Ottestad, L ; Karesen, R ; Schlichting, E ; Holmen, MM ; Sauer, T ; Haakensen, V ; Engebraten, O ; Naume, B ; Fossa, A ; Kiserud, CE ; Reinertsen, K ; Helland, A ; Riis, M ; Geisler, J ; Dunning, AM ; Thompson, DJ ; Chenevix-Trench, G ; Chang-Claude, J ; Schmidt, MK ; Hall, P ; Milne, RL ; Pharoah, PDP ; Antoniou, AC ; Chatterjee, N ; Kraft, P ; Garcia-Closas, M ; Easton, DF (CELL PRESS, 2019-01-03)
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
  • Item
    Thumbnail Image
    The Use of Optimal Treatment for DLBCL Is Improving in All Age Groups and Is a Key Factor in Overall Survival, but Non-Clinical Factors Influence Treatment
    Wong Doo, N ; White, VM ; Martin, K ; Bassett, JK ; Prince, HM ; Harrison, SJ ; Jefford, M ; Winship, I ; Millar, JL ; Milne, RL ; Seymour, JF ; Giles, GG (MDPI, 2019-06-26)
    INTRODUCTION: Diffuse large B cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma for which a cure is usually the therapeutic goal of optimal treatment. Using a large population-based cohort we sought to examine the factors associated with optimal DLBCL treatment and survival. METHODS: DLBCL cases were identified through the population-based Victorian Cancer Registry, capturing new diagnoses for two time periods: 2008-2009 and 2012-2013. Treatment was pre-emptively classified as 'optimal' or 'suboptimal', according to compliance with current treatment guidelines. Univariable and multivariable logistic regression models were fitted to determine factors associated with treatment and survival. RESULTS: Altogether, 1442 DLBCL cases were included. Based on multivariable analysis, delivery of optimal treatment was less likely for those aged ≥80 years (p < 0.001), women (p = 0.012), those with medical comorbidity (p < 0.001), those treated in a non-metropolitan hospital (p = 0.02) and those who were ex-smokers (p = 0.02). Delivery of optimal treatment increased between 2008-2009 and the 2012-2013 (from 60% to 79%, p < 0.001). Delivery of optimal treatment was independently associated with a lower risk of death (hazard ratio (HR) = 0.60 (95% confidence interval (CI) 0.45-0.81), p = 0.001). CONCLUSION: Delivery of optimal treatment for DLBCL is associated with hospital location and category, highlighting possible demographic variation in treatment patterns. Together with an increase in the proportion of patients receiving optimal treatment in the more recent time period, this suggests that treatment decisions in DLBCL may be subject to non-clinical influences, which may have implications when evaluating equity of treatment access. The positive association with survival emphasizes the importance of delivering optimal treatment in DLBCL.
  • Item
    Thumbnail Image
    Homologous recombination DNA repair defects in PALB2-associated breast cancers
    Li, A ; Geyer, FC ; Blecua, P ; Lee, JY ; Selenica, P ; Brown, DN ; Pareja, F ; Lee, SSK ; Kumar, R ; Rivera, B ; Bi, R ; Piscuoglio, S ; Wen, HY ; Lozada, JR ; Gularte-Merida, R ; Cavallone, L ; Rezoug, Z ; Nguyen-Dumont, T ; Peterlongo, P ; Tondini, C ; Terkelsen, T ; Ronlund, K ; Boonen, SE ; Mannerma, A ; Winqvist, R ; Janatova, M ; Rajadurai, P ; Xia, B ; Norton, L ; Robson, ME ; Ng, P-S ; Looi, L-M ; Southey, MC ; Weigelt, B ; Soo-Hwang, T ; Tischkowitz, M ; Foulkes, WD ; Reis-Filho, JS ; Aghmesheh, M ; Amor, D ; Andrews, L ; Antill, Y ; Balleine, R ; Beesley, J ; Blackburn, A ; Bogwitz, M ; Brown, M ; Burgess, M ; Burke, J ; Butow, P ; Caldon, L ; Campbell, I ; Christian, A ; Clarke, C ; Cohen, P ; Crook, A ; Cui, J ; Cummings, M ; Dawson, S-J ; De Fazio, A ; Delatycki, M ; Dobrovic, A ; Dudding, T ; Duijf, P ; Edkins, E ; Edwards, S ; Farshid, G ; Fellows, A ; Field, M ; Flanagan, J ; Fong, P ; Forbes, J ; Forrest, L ; Fox, S ; French, J ; Friedlander, M ; Ortega, DG ; Gattas, M ; Giles, G ; Gill, G ; Gleeson, M ; Greening, S ; Haan, E ; Harris, M ; Hayward, N ; Hickie, I ; Hopper, J ; Hunt, C ; James, P ; Jenkins, M ; Kefford, R ; Kentwell, M ; Kirk, J ; Kollias, J ; Lakhani, S ; Lindeman, G ; Lipton, L ; Lobb, L ; Lok, S ; Macrea, F ; Mane, G ; Marsh, D ; Mclachlan, S-A ; Meiser, B ; Milne, R ; Nightingale, S ; O'Connell, S ; Pachter, N ; Patterson, B ; Phillips, K ; Saleh, M ; Salisbury, E ; Saunders, C ; Saunus, J ; Scott, C ; Scott, R ; Sexton, A ; Shelling, A ; Simpson, P ; Spigelman, A ; Spurdle, M ; Stone, J ; Taylor, J ; Thorne, H ; Trainer, A ; Trench, G ; Tucker, K ; Visvader, J ; Walker, L ; Wallis, M ; Williams, R ; Winship, I ; Wu, K ; Young, MA (NATURE PUBLISHING GROUP, 2019-08-08)
    Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.
  • Item
    Thumbnail Image
    Development and validation of a targeted gene sequencing panel for application to disparate cancers
    McCabe, MJ ; Gauthier, M-EA ; Chan, C-L ; Thompson, TJ ; De Sousa, SMC ; Puttick, C ; Grady, JP ; Gayevskiy, V ; Tao, J ; Ying, K ; Cipponi, A ; Deng, N ; Swarbrick, A ; Thomas, ML ; kConFab, ; Lord, RV ; Johns, AL ; Kohonen-Corish, M ; O'Toole, SA ; Clark, J ; Mueller, SA ; Gupta, R ; McCormack, AI ; Dinger, ME ; Cowley, MJ (Nature Publishing Group, 2019-11-19)
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour's molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy.