Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Multifunctional Antibodies Are Induced by the RTS,S Malaria Vaccine and Associated With Protection in a Phase 1/2a Trial
    Kurtovic, L ; Atre, T ; Feng, G ; Wines, BD ; Chan, J-A ; Boyle, MJ ; Drew, DR ; Hogarth, PM ; Fowkes, FJ ; Bergmann-Leitner, ES ; Beeson, JG (OXFORD UNIV PRESS INC, 2021-10-01)
    BACKGROUND: RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. METHODS: We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. RESULTS: Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. CONCLUSIONS: Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. CLINICAL TRIALS REGISTRATION: NCT00075049.
  • Item
    Thumbnail Image
    Novel Virus-Like Particle Vaccine Encoding the Circumsporozoite Protein of Plasmodium falciparum Is Immunogenic and Induces Functional Antibody Responses in Mice
    Kurtovic, L ; Wetzel, D ; Reiling, L ; Drew, DR ; Palmer, C ; Kouskousis, B ; Hanssen, E ; Wines, BD ; Hogarth, PM ; Suckow, M ; Jenzelewski, V ; Piontek, M ; Chan, J-A ; Beeson, JG (FRONTIERS MEDIA SA, 2021-03-17)
    RTS,S is the leading malaria vaccine in development, but has demonstrated only moderate protective efficacy in clinical trials. RTS,S is a virus-like particle (VLP) that uses the human hepatitis B virus as scaffold to display the malaria sporozoite antigen, circumsporozoite protein (CSP). Particle formation requires four-fold excess scaffold antigen, and as a result, CSP represents only a small portion of the final vaccine construct. Alternative VLP or nanoparticle platforms that reduce the amount of scaffold antigen and increase the amount of the target CSP antigen present in particles may enhance vaccine immunogenicity and efficacy. Here, we describe the production and characterization of a novel VLP that uses the small surface antigen (dS) of duck hepatitis B virus to display CSP. The CSP-dS fusion protein successfully formed VLPs without the need for excess scaffold antigen, and thus CSP represented a larger portion of the vaccine construct. CSP-dS formed large particles approximately 31-74 nm in size and were confirmed to display CSP on the surface. CSP-dS VLPs were highly immunogenic in mice and induced antibodies to multiple regions of CSP, even when administered at a lower vaccine dosage. Vaccine-induced antibodies demonstrated relevant functional activities, including Fc-dependent interactions with complement and Fcγ-receptors, previously identified as important in malaria immunity. Further, vaccine-induced antibodies had similar properties (epitope-specificity and avidity) to monoclonal antibodies that are protective in mouse models. Our novel platform to produce VLPs without excess scaffold protein has wide implications for the future development of vaccines for malaria and other infectious diseases.
  • Item
    Thumbnail Image
    Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites
    Feng, G ; Wines, BD ; Kurtovic, L ; Chan, J-A ; Boeuf, P ; Mollard, V ; Cozijnsen, A ; Drew, DR ; Center, RJ ; Marshall, DL ; Chishimba, S ; McFadden, G ; Dent, AE ; Chelimo, K ; Boyle, MJ ; Kazura, JW ; Hogarth, PM ; Beeson, JG (NATURE PORTFOLIO, 2021-03-19)
    A highly protective vaccine will greatly facilitate achieving and sustaining malaria elimination. Understanding mechanisms of antibody-mediated immunity is crucial for developing vaccines with high efficacy. Here, we identify key roles in humoral immunity for Fcγ-receptor (FcγR) interactions and opsonic phagocytosis of sporozoites. We identify a major role for neutrophils in mediating phagocytic clearance of sporozoites in peripheral blood, whereas monocytes contribute a minor role. Antibodies also promote natural killer cell activity. Mechanistically, antibody interactions with FcγRIII appear essential, with FcγRIIa also required for maximum activity. All regions of the circumsporozoite protein are targets of functional antibodies against sporozoites, and N-terminal antibodies have more activity in some assays. Functional antibodies are slowly acquired following natural exposure to malaria, being present among some exposed adults, but uncommon among children. Our findings reveal targets and mechanisms of immunity that could be exploited in vaccine design to maximize efficacy.
  • Item
    Thumbnail Image
    Th2-like T Follicular Helper Cells Promote Functional Antibody Production during Plasmodium falciparum Infection
    Chan, J-A ; Loughland, JR ; Rivera, FDL ; SheelaNair, A ; Andrew, DW ; Dooley, NL ; Wines, BD ; Amante, FH ; Webb, L ; Hogarth, PM ; McCarthy, JS ; Beeson, JG ; Engwerda, CR ; Boyle, MJ (CELL PRESS, 2020-12-22)
    CD4+ T follicular helper cells (Tfh) are key drivers of antibody development. During Plasmodium falciparum malaria in children, the activation of Tfh is restricted to the Th1 subset and not associated with antibody levels. To identify Tfh subsets that are associated with antibody development in malaria, we assess Tfh and antibodies longitudinally in human volunteers with experimental P. falciparum infection. Tfh cells activate during infection, with distinct dynamics in different Tfh subsets. Th2-Tfh cells activate early, during peak infection, while Th1-Tfh cells activate 1 week after peak infection and treatment. Th2-Tfh cell activation is associated with the functional breadth and magnitude of parasite antibodies. In contrast, Th1-Tfh activation is not associated with antibody development but instead with plasma cells, which have previously been shown to play a detrimental role in the development of long-lived immunity. Thus, our study identifies the contrasting roles of Th2 and Th1-Tfh cells during experimental P. falciparum malaria.
  • Item
    Thumbnail Image
    Epidemic thunderstorm asthma susceptibility from sensitization to ryegrass (Lolium perenne) pollen and major allergen Lol p 5
    Hew, M ; Lee, J ; Varese, N ; Aui, PM ; McKenzie, CI ; Wines, BD ; Aumann, H ; Rolland, JM ; Mark Hogarth, P ; van Zelm, MC ; O'Hehir, RE (WILEY, 2020-09)