Medicine (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review
    Nhu, D ; Janmohamed, M ; Antonic-Baker, A ; Perucca, P ; O'Brien, TJ ; Gilligan, AK ; Kwan, P ; Tan, CW ; Kuhlmann, L (IOP Publishing Ltd, 2022-10-01)
    Automated interictal epileptiform discharge (IED) detection has been widely studied, with machine learning methods at the forefront in recent years. As computational resources become more accessible, researchers have applied deep learning (DL) to IED detection with promising results. This systematic review aims to provide an overview of the current DL approaches to automated IED detection from scalp electroencephalography (EEG) and establish recommendations for the clinical research community. We conduct a systematic review according to the PRISMA guidelines. We searched for studies published between 2012 and 2022 implementing DL for automating IED detection from scalp EEG in major medical and engineering databases. We highlight trends and formulate recommendations for the research community by analyzing various aspects: data properties, preprocessing methods, DL architectures, evaluation metrics and results, and reproducibility. The search yielded 66 studies, and 23 met our inclusion criteria. There were two main DL networks, convolutional neural networks in 14 studies and long short-term memory networks in three studies. A hybrid approach combining a hidden Markov model with an autoencoder was employed in one study. Graph convolutional network was seen in one study, which considered a montage as a graph. All DL models involved supervised learning. The median number of layers was 9 (IQR: 5-21). The median number of IEDs was 11 631 (IQR: 2663-16 402). Only six studies acquired data from multiple clinical centers. AUC was the most reported metric (median: 0.94; IQR: 0.94-0.96). The application of DL to IED detection is still limited and lacks standardization in data collection, multi-center testing, and reporting of clinically relevant metrics (i.e. F1, AUCPR, and false-positive/minute). However, the performance is promising, suggesting that DL might be a helpful approach. Further testing on multiple datasets from different clinical centers is required to confirm the generalizability of these methods.
  • Item
    Thumbnail Image
    Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning-clinical application perspectives
    Janmohamed, M ; Duong, N ; Kuhlmann, L ; Gilligan, A ; Tan, CW ; Perucca, P ; O'Brien, TJ ; Kwan, P (OXFORD UNIV PRESS, 2022-09-01)
    The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.
  • Item
    Thumbnail Image
    Automated inter-ctal epileptiform discharge detection from routine EEG
    Nhu, D ; Janmohamed, M ; Shakhatreh, L ; Gonen, O ; Kwan, P ; Gilligan, A ; Wei Tan, C ; Kuhlmann, L (IOS Press, 2021-04-19)
    Epilepsy is the most common neurological disorder. The diagnosis commonly requires manual visual electroencephalogram (EEG) analysis which is time-consuming. Deep learning has shown promising performance in detecting interictal epileptiform discharges (IED) and may improve the quality of epilepsy monitoring. However, most of the datasets in the literature are small (n≤100) and collected from single clinical centre, limiting the generalization across different devices and settings. To better automate IED detection, we cross-evaluated a Resnet architecture on 2 sets of routine EEG recordings from patients with idiopathic generalized epilepsy collected at the Alfred Health Hospital and Royal Melbourne Hospital (RMH). We split these EEG recordings into 2s windows with or without IED and evaluated different model variants in terms of how well they classified these windows. The results from our experiment showed that the architecture generalized well across different datasets with an AUC score of 0.894 (95% CI, 0.881–0.907) when trained on Alfred’s dataset and tested on RMH’s dataset, and 0.857 (95% CI, 0.847–0.867) vice versa. In addition, we compared our best model variant with Persyst and observed that the model was comparable.