Medical Biology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Dissecting the role of TNF signalling in Mycobacterium tuberculosis disease pathogenesis to identify novel therapeutic targets
    Stutz, Michael Dominic ( 2018)
    Mycobacterium tuberculosis (Mtb) is a formidable public health challenge, with a global epidemic, fuelled partly by rampant antibiotic resistance, that has the medical community grappling with more infected individuals than at any other time in history. Mtb is remarkable in its ability to efficiently disarm its primary host cell, the macrophage. One of our most crucial immunological defences against this highly skilled pathogen is the cytokine tumour necrosis factor (TNF), which can promote either cell survival or programmed cell death via apoptosis or necroptosis, depending on the cellular context. Given this essential role, TNF and its downstream pathways represent attractive therapeutic targets for tuberculosis (TB). Despite decades of research, however, fundamental insights into the means by which TNF mediates host protection remain elusive and have been hampered by reports of a pathological role of this cytokine in TB. The aim of this thesis is to systematically dissect the various components of TNF signalling and their impact on Mtb disease outcomes in order to identify aspects of the pathway that may be amenable to therapeutic intervention. This is achieved using a cutting-edge genetic approach and physiologically-relevant animal models of TB. Recent work suggested that TNF induces programmed forms of necrosis in Mtb-infected macrophages, thus promoting Mtb pathogenesis by facilitating mycobacterial escape and dissemination. In Chapters 3 and 4, I show that neither necroptosis, dependent on mixed lineage kinase domain-like (MLKL), nor a previously-undescribed death modality dependent on receptor-interacting protein kinase 3 (RIPK3) and B cell lymphoma-extra large (BCL-XL), are responsible for macrophage death during Mtb infection, and do not contribute to disease progression. This is in spite of the observation that the former pathway is strongly primed upon infection, suggesting that necroptosis is favoured by Mtb but ultimately restricted by the host. In contrast to lytic death, apoptosis of infected cells is considered beneficial to the host as the process is intrinsically microbicidal. In Chapter 5, I show that TNF is the primary death ligand driving the extrinsic apoptotic death pathway in infected macrophages during Mtb infection. Furthermore, I demonstrate that this pathway is beneficial in terms of eliminating intracellular bacilli and promoting the activation of adaptive immunity. Having established that apoptosis is protective, I postulate in Chapter 6 that the ability to pharmacologically modulate this process presents a potential therapeutic opportunity. Inhibitor of apoptosis (IAP) protein antagonists promote programmed cell death upon death ligand stimulation. I show that clinical-stage IAP antagonists selectively promote the apoptotic death of Mtb-infected macrophages in mice, and that this promotes the clearance of Mtb. I also extend these findings to infections caused by Burkholderia pseudomallei, in which a single dose of IAP antagonists completely eliminated the pathogen from the lungs. In summary, this thesis demonstrates that host TNF overwhelmingly promotes signalling pathways that are protective against Mtb. This refutes prior work suggesting that regulated necrosis is induced by TNF, and that advocated for the use of inhibitors of these pathways for the treatment of TB. The insights gained from this work have, however, led to the identification of a viable therapeutic strategy for Mtb and other intracellular pathogens, based on the finding that TNF-driven apoptosis of infected cells is beneficial to the host and can be harnessed with clinical-stage pharmaceuticals.