Medical Biology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Complement evasion mechanisms of the deadly human pathogen Plasmodium falciparum
    Kennedy, Alexander Thomas ( 2016)
    The human complement system is a front-line defence system against invading pathogens. It has over 50 different protein components that are involved either in pathogen clearance or in the regulation of complement. The two main mechanisms of clearance are direct membrane lysis or opsonisation leading to enhanced phagocytosis. Despite the presence of this potent system, many pathogens thrive in human serum due to the evolution of complement evasion strategies. One common evasion strategy involves pathogens recruiting host regulators of complement activation to down- regulate complement attack on their surfaces. Merozoites, the invasive stage of malaria parasites are exposed to serum after egress from the host red blood cell. In this thesis, we examined whether merozoites recruit human regulators of complement activation to their surface to evade complement-mediated destruction. We found that merozoites recruit the human regulators Factor H, Factor H-like 1 and C1 esterase inhibitor to their surface. Factor H and Factor H-like 1 are recruited by an interaction between the merozoite surface protein Pf92, a member of the six cysteine family of merozoite surface proteins, and the complement control protein modules 5-6 of the Factor H and Factor H-like 1 proteins. When bound to the merozoite surface, Factor H and Factor H- like 1 retain cofactor activity, a key function that allows them to down-regulate the alternative pathway of complement activation. Deletion of the Pf92 gene resulted in a loss of Factor H and Factor H-like 1 recruitment and an increased susceptibility of merozoites to immune destruction. We also showed that C1 esterase inhibitor is recruited to the merozoite surface by an interaction between PfMSP3.1, a member of the MSP3 family of merozoite surface proteins, and the C1 esterase inhibitor serpin domain. Bound C1 esterase inhibitor retained the ability to complex with complement activating proteases C1s, MASP1 and MASP2, allowing it to down-regulate both the classical and lectin pathways of complement on the merozoite surface. Deletion of the PfMSP3.1 gene led to a loss of C1 esterase inhibitor recruitment and an increase in complement deposition on merozoites. However, this resulted in enhanced merozoite invasion in the presence of active complement rather than merozoite destruction. Overall, the ability of merozoites to sequester host complement regulators has important implications for the immune evasion strategy of malaria parasites amid a growing body of evidence for an important role of complement in protection.
  • Item
    Thumbnail Image
    The molecular epidemiology of malaria in Solomon Islands
    Waltmann, Andreea ( 2016)
    Historically, Solomon Islands in the Southwest Pacific has endured considerable P. falciparum and P. vivax burden. In the last 20 years, it has achieved 90% reduction in malaria cases through sustained, intensified malaria interventions (long lasting insecticide nets, indoor residual sprays and artemisinin-combination therapy) and is aiming for elimination by 2030. In 2012 and 2013, we conducted two cross-sectional surveys (study 1, all age, n=3501; study 2, age 0.5-12 years, n=1078) in Ngella, an area of low to moderate transmission. We aimed to investigate the natural reservoir and local epidemiology of P. vivax and P. falciparum. The contrast was striking. In the 2012 survey, only five clonal P. falciparum infections were identified from a single village and had the same msp2 genotpye. P. vivax prevalence was found to be moderately high (PCR, 13.4%), with predominantly afebrile, submicroscopic infections. The P. vivax infections displayed high genetic complexity (by genotyping with msp1F3 and MS16) and considerable spatial heterogeneity among and within different Ngella regions, and even at sub-village level with some households disproportionately harboring more infected co-inhabitants than others. In the 2013 study, a further seven P. falciparum infections were found in multiple locations, indicating that transmission of this species is continuing but at very low levels and infections are predominantly asymptomatic. To investigate the transmission scenario of the two species in more detail, we undertook population genetics analyses. We typed the five 2012 P. falciparum infections at 10 polymorphic microsatellite loci and 323 P. vivax infections at nine microsatellite loci. The five P. falciparum infections also clonal by this panel of 10 markers. Subsequent analyses of diversity (FST, GST, Jost’s D) and structure (Bayesian clustering) for P. vivax, revealed a genetically diverse population, but spatially fragmented, even among villages 6-15km apart. This indicates that whilst P. vivax may be more difficult to eliminate than P. falciparum, local parasite populations of both species have been affected by control interventions. A noteworthy epidemiological result from the 2012 survey was that living in a household with at least one other P. vivax carrier increased the risk of P. vivax infection, suggesting possible intra-household transmission. Subsequent analysis of genetic relatedness of P. vivax infections within households vs. among households indicated supported this hypothesis. Isolates from the same household were more genetically related than isolates from different households, and a high level of genetic kinship was retained among households located up to 100 meters of each other. Associations of P. vivax infection with human genetic factors known to confer protection against infection (α-thalassemia and Southeast Asian ovalocytosis, SAO) have been investigated in a second cross-sectional study conducted in 2013 in children aged 6 months to 12 years of age. SAO was not found in Ngella, whereas approximately a third of 1078 subjects were found to harbor the α-thalassemia alleles. The findings presented in this thesis will be discussed in the context of factors which may impact on follow-up elimination strategies in Solomon Islands, the Southwest Pacific and elsewhere in the endemic world where both P. falciparum and P. vivax are co-endemic.  
  • Item
    Thumbnail Image
    Merozoite surface protein 1: insights into complex formation and function in erythrocyte invasion
    Lin, Clara Shujuan ( 2016)
    The invasion of Plasmodium falciparum into host erythrocytes during the parasites’ asexual blood stage is a critical step in the perpetuation of symptomatic infection of malaria in the human host. Merozoites, the invasive form of the parasite, express a glycosylphosphatidylinositol-anchored 190 kDa Merozoite Surface Protein 1 (MSP1) on the surface. This abundant, essential protein exists in a large complex that includes other peripheral Merozoite Surface Proteins (MSPs). Together, these large macromolecular complexes are thought to mediate the initial stages of invasion. MSPs are of great interest to the field as they are exposed to the host immune system and also contribute directly to the invasion process. Therefore, there is a strong consideration for considering them as therapeutic targets. The majority of the work assessing these molecules as potential vaccine candidates has been performed with single MSP antigens and vaccine trials on these MSPs have shown variable results. A main concern arising from these trials is the fact that these antigens are often found in complex with other antigens and therefore have regions that are masked when found on the parasite surface. In order to address this, the work presented in this thesis utilises parasite-derived complexes to understand how peripheral MSPs: MSP3, MSP6, MSPDBL1, MSPDBL2 and MSP7 utilise MSP1 as a platform to be presented on the merozoite surface to form an array of complexes with different functional roles. In addition, multiple forms of erythrocyte binding complexes were found to have overlapping functions in invasion. Complexes that are involved in erythrocyte binding were characterised, where two components, MSPDBL1 and MSPDBL2 were shown to mediate erythrocyte binding directly. Overall, this study has identified and validated the presence of multiple Merozoite Surface Protein 1 complexes that are involved in mediating the interaction of the merozoite to receptors on the red blood cell surface, which is a vital process for successful invasion of parasites into host erythrocytes. Together, these findings have provided valuable insights into the complexity of MSP1 complexes and have contributed to the most complete model for the molecular arrangements that occur on the parasite surface to date.
  • Item
    Thumbnail Image
    Analysis of 6-cys proteins and calcium fluxes during erythrocyte invasion by Plasmodium falciparum parasites
    TAECHALERTPAISARN, TANA ( 2015)
    Plasmodium parasites amplify their population within the human host by invading, growing and replicating within the body’s erythrocytes. When the population becomes high enough, the damage caused produces symptomatic malaria disease. To develop new drugs and vaccines against malaria it is therefore important to know as much possible about how parasites grow within the human host and particularly about how the extracellular merozoite stage invades erythrocytes, since this short-lived stage is highly vulnerable. This thesis provides new information from the most deadly human malaria pathogen P. falciparum, on the biochemical characteristics of a little known family of merozoite surface proteins which were thought to facilitate erythrocyte invasion as well revealing with unprecedented resolution, new details about how merozoites enter erythrocytes. P12, P38, P41, and P92 comprise a group of blood-stage merozoite surface proteins that belong to the 6-cys family and all except P41 are predicted to have membrane anchors. To functionally characterize the proteins, specific antibodies were made and were then employed to block merozoite invasion by interfering with the binding of 6-cys to erythrocytes. The effect of the antibodies was very weak and therefore not indicative of a major role for 6-cys in invasion. The antibodies were then used as localization probes and indicated that P12 and P41 were at the merozoite periphery with some concentrated towards the apex. In addition, the non-anchored P41 was held on the merozoite surface through heterodimerization with the membrane anchored P12. Despite the P12/P41 heterodimer being in prime position to bind erythrocytes during invasion no evidence for binding could be established. Characterisation of P92 was next conducted and revealed that like the P12/P41 heterodimer, it was tightly associated with the parasite membrane and later cleaved off possibly during invasion. On the other hand, P38 did not shed from the merozoite surface, and it was carried into the erythrocyte. P92 was strictly localised to the apical end of the merozoite while P38 displayed both apical and surface localisation. Similar to the P12/P41 heterodimer, P92 does not appear to bind erythrocytes. In a final attempt to derive a function for the blood stage 6-cys, their genes were individually knocked out but none of the mutants produced any defective growth or invasion phenotypes suggestive of function. To further study invasion, the morphology and kinetics of this process in P. falciparum merozoites was examined with high-speed live-cell microscopy. With greater temporal resolution, novel cellular actions of the merozoites were observed. For example, during the 7.5 s pre-invasion phase the merozoite deforms the erythrocyte plasma membrane multiple times whilst re-orientating. After a brief rest, the merozoite invaded over a ~17 s period forming a vacuole mainly from wrapping the erythrocyte’s membrane around itself. About 18.5 s after entry, the merozoite began spinning in a clockwise direction to possibly to help disconnect itself from the erythrocyte membrane. After spinning had commenced the host erythrocyte began to develop a spiculated appearance called echinocytosis. Suspecting that calcium influx into the erythrocyte during invasion might be responsible for the echinocytosis, the appearance of these fluxes was monitored during invasion by live cell imaging. These observations confirmed for the first time, that a calcium flux originated as an intense spot emanating from the area of contact between the merozoite and erythrocyte suggestive of pore formation between the cells. Further experiments with modified levels of calcium indicated the ion is required for efficient invasion and may play role in causing echinocytosis. Other work using the calcium flux as a visual marker indicated that pore formation coincided with the deployment of tight adhesive proteins from the merozoite that commit it to invasion. The live cell imaging work presented therefore sheds considerable light on many details of merozoite invasion that could inform future drug and vaccine development. Supplementary Videos: Video 1. High-speed time-lapse acquisition of 3D7 merozoite invading the erythrocyte (40 fps). Video 2. The 3D7 merozoite invading the BODIPY FL C12-sphingomyelin labelled erythrocyte (2 fps, 2× real speed). Video 3. The 3D7 merozoite invading the erythrocyte in the presence of Fluo-4 AM showing the punctate apical calcium and calcium influx in the infected erythrocyte (3 fps, 8× real speed) Video 4. Fluo-4-stained 3D7 parasite culture showing merozoites attempting to invade in the presence of R1 peptide (3 fps, 8× real speed). The punctate apical calcium and influx in the attached erythrocyte were detectable. Video 5. Fluo-4-stained 3D7 parasite culture showing merozoites attempting to invade in the presence of R1 peptide (variable speed). The echinocytotic erythrocyte had not recovered after ~20 min of recording. Video 6. CytD-treated 3D7 merozoite attempting to invade the Fluo-4 labelled erythrocyte (variable speed). The punctate apical calcium was visible but the calcium influx was difficult to observe. The echinocytotic erythrocyte had not recovered after ~20 min of recording.