Medical Biology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The role of RIPK3 ubiquitylation and MLKL signalling during cell death and autophagy
    Frank, Daniel ( 2021)
    Receptor Interacting Serine/Threonine Kinase-3 (RIPK3) is essential for necroptosis, an inflammatory form of programmed cell death pathway implicated in innate immunity, kidney ischemia reperfusion injury, and systemic inflammatory response syndrome. In the classical model, cells committed to necroptosis phosphorylate RIPK1, which in turn drives RIPK3 phosphorylation and oligomerisation. Active RIPK3 oligomers subsequently phosphorylate mixed lineage kinase domain-like protein (MLKL) pseudokinase which induces its translocation to the plasma membrane. The necroptosis pathway culminates in MLKL perforating the plasma membrane as a prelude to cellular rupture and release of inflammatory cytokines and damage-associated molecular patterns to the extracellular milieu. In addition to being a pro-necroptotic kinase, RIPK3 is also capable of triggering apoptosis when its kinase activity is restrained. Moreover, numerous death-independent roles of RIPK3 have been described in the context of inflammation such as arthritis, viral infection, or colitis whereby RIPK3 either promotes or dampens the secretion of pro-inflammatory cytokines. Understanding the molecular regulation of RIPK3 will thereby facilitate the ongoing pre-clinical development of RIPK3 inhibitors. Like most proteins, post-translational modification (PTM) is a critical fine tuner of RIPK3 activities. Ubiquitylation, in particular, has recently garnered attention in the cell death field as loss of this PTM may result in hyperactive RIPK3 which consequently accelerates death and inflammation. However, the post-translational control of RIPK3 signalling is not fully understood. Using mass-spectrometry, I identified a novel ubiquitylation site on murine RIPK3 on lysine 469 (K469). Complementation of RIPK3-deficient cells with a RIPK3-K469R mutant demonstrated that the decoration of RIPK3 K469 by ubiquitin limits both RIPK3-mediated caspase-8 activation and apoptotic killing, in addition to RIPK3 autophosphorylation and MLKL-mediated necroptosis. Unexpectedly, the overall ubiquitylation of mutant RIPK3-K469R was enhanced, which largely resulted from additional RIPK3 ubiquitylation upstream on lysine 359 (K359). Loss of RIPK3-K359 ubiquitylation reduced RIPK3-K469R hyper-ubiquitylation and also RIPK3-K469R killing. Collectively, I therefore propose that ubiquitylation of RIPK3 on K469 functions to prevent RIPK3 hyper-ubiquitylation on alternate lysine residues, which otherwise promote RIPK3 oligomerisation and consequent cell death signalling. I further investigated the consequence of abolishing RIPK3 K469 ubiquitylation by generating Ripk3K469R/K469R mice. In agreement with in vitro findings, primary fibroblasts with mutant RIPK3-K469R enhanced apoptosis, and in vivo studies demonstrate that RIPK3-K469 ubiquitylation contributes to pathogen clearance. Specifically, when Ripk3K469R/K469R mice were challenged with Salmonella enterica serovar Typhimurium, bacterial loads in the spleen and liver were significantly increased relative to wildtype control animals. The increased bacterial burden in the mutant mice was consistent with reduced IFNg produced in the serum, while the elevated MCP-1 cytokine upon infection might be indicative of heightened immune infiltrates. Although necroptosis signalling clearly triggers cell death, how it might impact other cellular responses remains unclear. Therefore, to further delineate the functional outcomes of necroptotic activity I examined how its signalling impacts autophagy. The autophagy pathway is triggered when cells are deprived of nutrients. Although regarded as a pro-survival pathway which acts to recycle and remove damaged organelles, studies have recognised that autophagic pathways can impact cell death processes. In apoptosis, for instance, autophagy acts to limit pro-inflammatory IFN-b secretion, thus decreasing apoptotic immunogenicity. Nonetheless, little is known about the status of autophagy during necroptosis. I demonstrate through various genetic, imaging, and pharmacological approaches that active MLKL translocates to autophagic membranes during necroptosis. However, contrary to previous findings which reported the activation of autophagy upon necroptotic activity based on increased lipidated LC3B, a commonly used marker of autophagy induction, I challenged this conclusion by demonstrating that the accumulation of active LC3B during necroptosis is a consequence of reduced autophagic flux. Therefore, unlike apoptosis which proceeds in tandem with autophagy, the induction of necroptosis negates autophagy in an MLKL-dependent manner. While the function of MLKL-mediated autophagy inhibition warrants further investigation, I propose that attenuating autophagy during necroptosis contributes to the immunogenicity of this cell death modality by limiting the ability of the cell to clear damaged organelles and immunogenic molecules. Overall, my research has helped in outlining how a key necroptotic molecule RIPK3 is regulated post-translationally and how this is relevant in the context of microbial defence. I have also defined novel functional roles for necroptosis signalling in the regulation of autophagic responses. Understanding the molecular regulation of necroptosis signalling and how this cell death pathway is linked to other cellular responses, such as autophagy, is important for the accurate design of new therapeutics to target these pathways in pathological settings.
  • Item
    Thumbnail Image
    Characterization of new regulators in TNFR1-mediated death signalling
    Liu, Lin ( 2020)
    Tumor necrosis factor (TNF) is a master inflammatory cytokine that can, depending on the circumstances, promote survival and proliferation or induce cell death. Anti-TNF drugs have proven strikingly successful in treating inflammatory diseases such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD) but it is still unclear exactly why. For a long time, it was thought that they work solely by preventing TNF induced transcription of other inflammatory cytokines, but more recently it has been proposed that one of their major anti-inflammatory functions is to prevent TNF induced death. Therefore, understanding the mechanism by which TNF induced death is regulated may enable the conceptualization of newer or improved approaches in treating a variety of inflammation-associated pathologies. Binding of TNF to its receptor TNFR1 leads to the formation of two distinct signalling complexes. While most previous studies have focused on the membrane-bound, transcription-activating complex (complex-1), the composition and post-translational modifications of the cytosolic, caspase-8-containing, death-inducing complex (complex-2) remain far less well defined. To analyse TNFR1 complex-2 composition at endogenous levels, we decided to generate FLAG tagged caspase-8 knock-in mouse strains. The reagents for the FLAG tag enable very efficient and specific purification and identification of a FLAG tagged protein and its partners. After some preliminary tests and trials, I decided to use a 3x FLAG tag which has been reported to be 20–200 times more sensitive than other FLAG tags in immunoprecipitation and detection assays. Before generating the mouse strains, in Chapter 3 I performed extensive in vitro comparison of N-terminally or C-terminally 3x FLAG-tagged caspase-8 using a doxycycline (Dox)-inducible stably integrated lentiviral system. The results suggested that when expressed above endogenous levels, the expression and killing activity of caspase-8 was unaffected by a 3x FLAG tag. Interestingly, when expressed at physiological levels, C-terminally 3x FLAG tagged caspase-8 appeared to be equivalent to untagged caspase-8 and marginally more efficient in mediating TNF-induced death and complex-2 formation compared to N-terminally 3x FLAG tagged caspase-8. In addition, I immunoprecipitated TNFR1 complex-2 from cells expressing endogenous levels of 3x FLAG tagged caspase-8 and performed a mass spectrometry (MS) analysis. According to this analysis, Tankyrase-1 (TNKS1/PARP5a/ ARTD5), a member of the poly ADP-ribose polymerase (PARP) superfamily, appears to be a novel interactor of complex-2. Based on our in vitro data, we generated N-terminally or C-terminally 3x FLAG tagged caspase-8 knock-in mice using CRIPSR/Cas9 technology and these mice were characterized in Chapter 4. Homozygous N-terminally or C-terminally 3x FLAG tagged caspase-8 knock-in mice were viable, fertile and developed normally, indicating that N-terminally or C-terminally 3x FLAG tagged caspase-8 were expressed and active in vivo, at least to heterozygous caspase-8 levels. As expected, the expression of N-terminal or C-terminal 3x FLAG tagged caspase-8 was detectable in tissue and cells from knock-in mice by Western blot and immunofluorescence stain using an anti-FLAG M2 antibody. The 3x FLAG tagged caspase-8 displayed similar tissue distribution and comparable expression levels as endogenous caspase-8. The cell death assay suggested that the primary cells and transformed cells from 3x FLAG tagged caspase-8 knock-in mice responded similarly as wild-type cells to apoptotic and necroptotic stimulations. Moreover, by performing anti-FLAG immunoprecipitation, I successfully purified endogenous TNFR1 complex-2 from knock-in mice derived cells. These data indicated that 3x FLAG tagged caspase-8 knock-in mouse strains are useful tools to study caspase-8 and caspase-8-containing protein complexes at physiological levels. In Chapter 5, I characterized tankyrases-mediated poly(ADP-ribosyl)ation (PARsylation) as a novel checkpoint that limits TNF-induced cytotoxicity. Using primary cells from the 3x FLAG tagged caspase-8 knock-in mice described in Chapter 4, I found that the enzyme tankyrase-1 (TNKS1/TNKS/PARP5a/ARTD5), which was identified by mass spectrometry in Chapter 3, is recruited to the endogenous TNFR1 complex-2. Western blot data indicates that tankyrase-2 (TNKS2/PARP5b/ARTD6) may also be recruited. Tankyrases are poly ADP-ribose polymerases and belong to an ancient group of enzymes that post-translationally modify proteins with ADP-ribose. I found that during TNF signalling, complex-2 becomes poly(ADP-ribosyl)ated (PARsylated) in a tankyrases-dependent manner. Furthermore, tankyrases-specific inhibitors sensitized cells to TNF-induced cell death, which correlated with increased levels of complex-2. This suggested that normally tankyrases help limit TNF induced death. Mechanistically, I showed that tankyrases may modulate the stability of complex-2 by recruiting the E3 ubiquitin ligase RNF146, that in turn promotes ubiquitylation and degradation of complex-2. Moreover, inactivation of tankyrases dramatically increased the killing of the clinical Smac-mimetic (SM) birinapant in a primary acute myeloid leukemia (AML) model. Taken together, this thesis describes 3x FLAG tagged caspase-8 knock-in mice as new tools to study caspase-8 and caspase-8-containing protein complexes at physiological levels. Furthermore, this study identifies tankyrases-mediated PARsylation as a novel checkpoint in TNF signalling that expands our understanding of how TNF induced death is regulated and provides a rationale to use tankyrases inhibitors for cancer therapy.