Medical Biology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Targets of antibodies to the surface of Plasmodium falciparum-infected erythrocytes and protective immunity to human malaria
    Chan, Jo-Anne ( 2012)
    Effective clinical immunity that protects against symptomatic malaria in humans develops gradually after repeated exposure to Plasmodium falciparum. Naturally acquired antibodies targeting antigens expressed on the surface of infected erythrocytes (IE) represent an important component of protective immunity against malaria. During intra-erythrocytic development, P. falciparum dramatically remodels the host erythrocyte membrane through the export of novel parasite proteins. Among these are antigens expressed on the IE surface, known as variant surface antigens (VSA), that include PfEMP1, RIFIN, STEVOR, SURFIN proteins and possibly others such as PfMC2TM and modified host band 3. These antigens are highly polymorphic and some are known to undergo clonal antigenic variation for immune evasion. Numerous studies have reported that individuals living in malaria endemic regions were capable of agglutinating P. falciparum-IEs suggesting the recognition of VSAs expressed on the IE surface. Longitudinal studies further suggested that anti-VSA antibodies were associated with protection from P. falciparum malaria. Previous studies have only been able to measure the acquired antibody response towards all VSAs expressed on the IE surface, due to a lack of tools to dissect the antibody responses to individual VSAs. Although studies have also evaluated antibodies to recombinant proteins, it has been difficult to directly quantify the contribution of each native VSA to the overall antibody response to the IE surface. The aims of this thesis were to quantify the significance of VSAs as targets of naturally acquired antibodies, with a particular focus on P. falciparum erythrocyte membrane protein 1 (PfEMP1) and evaluate the importance of naturally acquired antibodies to PfEMP1 and other antigens that afford clinical protection from symptomatic P. falciparum malaria. Novel approaches using transgenic P. falciparum with inhibited PfEMP1 expression have enabled the quantification of PfEMP1 relative to other VSAs as a target of acquired antibodies. This was achieved by the transfection of parasites with a construct that encodes a var gene promoter without a downstream var gene (vpkd; presented in Chapter 3) thus resulting in a PfEMP1-deficient line and the transfection of parasites with a construct that has a deletion of the pfsbp1 gene required for PfEMP1 trafficking (SBP1KO; presented in Chapter 4). These approaches were then applied to human studies in Kenya and Papua New Guinea (PNG) and comparisons between parental and PfEMP1-deficient transgenic parasites allowed for the determination of antibodies specific to PfEMP1. The functional significance of naturally acquired antibodies was determined using assays that specifically measure antibody-mediated phagocytosis of IEs by undifferentiated monocytes. In addition, the clinical importance of PfEMP1-specific antibody responses was further investigated in a longitudinal cohort study with PNG school children. Characterisation of the transgenic vpkd parasites demonstrated reduced var gene transcription by Northern blot analyses and the absence of PfEMP1 proteins by Western blot analyses of IE membrane extracts, thus suggesting that PfEMP1 expression was inhibited in these parasites. In addition, characterisation of the SBP1KO parasites confirmed the absence of PfSBP1 protein in Western blot analyses and immunofluorescence microscopy of pigmented trophozoite IEs. However, other VSAs such as RIFIN and STEVOR, and other IE membrane proteins such as PfEMP3 were still expressed by the transgenic vpkd and SBP1KO parasites. Furthermore, transmission electron microscopy of pigmented trophozoite IEs confirmed the presence of knob structures on the IE surface of the vpkd parasites, similar to parental parasites. These findings suggest that despite the inhibition of PfEMP1, other IE membrane proteins and knob assembly occurred normally in the transgenic vpkd and SBP1KO parasites. Among malaria-exposed children and adults from Kenya and PNG, IgG binding to the surface of erythrocytes infected with the transgenic vpkd parasites was substantially reduced compared to parental. This suggests that majority of the acquired antibody response to the IE surface was predominantly directed towards PfEMP1, while other VSAs appear to play a minor role in relation to immunity. These key findings were confirmed with two genetically different parasite lines, 3D7 and E8B. Furthermore, using sera from children, adults and pregnant women available from Kenya or PNG, IgG binding to the surface of erythrocytes infected with the transgenic SBP1KO parasites was also markedly reduced compared to parental, suggesting that antibodies primarily targeted major antigens expressed on the IE surface that are dependent on PfSBP1 for trafficking. Currently, only PfEMP1 is known to be trafficked by PfSBP1 and this study has demonstrated that other VSAs such as RIFIN and STEVOR proteins remain expressed by the SBP1KO parasites. Comparing the antibody responses between PNG adults and children demonstrated that IgG binding to the vpkd and SBP1KO parasites was substantially reduced in both groups, suggesting that both adults and children had a great proportion of PfEMP1-specific antibodies. Evaluating the effect of trypsin treatment of IEs on antibody binding showed that most serum samples targeted trypsin sensitive epitopes expressed on the IE surface, consistent with PfEMP1 being the major target of antibodies. However, some samples appeared to target trypsin resistant epitopes on the IE surface of the vpkd and SBP1KO parasites. This study provides major new evidence that PfEMP1 is the dominant target of naturally acquired antibodies to the IE surface. In assays that specifically measure antibody-mediated phagocytosis by undifferentiated monocytes, the level of opsonic phagocytosis activity was greatly reduced in the transgenic vpkd parasites compared to parental. These results suggest that PfEMP1-specific antibodies are essential to promote IE opsonisation for phagocytosis by monocytes, an important mechanism in parasite clearance. Thus, these finding provide further evidence that PfEMP1 represents the major target of functional antibodies. Some measurable level of opsonic phagocytosis activity was still detected with the transgenic vpkd parasites although the level of IgG binding to these parasites were extremely low, suggesting that antibodies to non-PfEMP1 antigens may also function to opsonize IEs for phagocytic clearance. The clinical importance of antibodies to PfEMP1 and other VSAs was further evaluated in a longitudinal study conducted with school children from Madang, PNG. Antibodies to the 3D7 parental and 3D7-PfEMP1 (reflected in the difference between IgG binding to 3D7 parental versus 3D7vpkd) were associated with a significantly reduced risk of symptomatic P. falciparum malaria whereas antibodies to 3D7vpkd (reflecting antibodies to non- PfEMP1 antigens) were not associated with protective immunity. Children with antibodies to other isolates such as E8B and XIE-ICAM also had a reduction in malaria risk, however these associations were not statistically significant. It should be noted that there was insufficient statistical power in the current study to detect differences in small effect sizes and weak associations. The protective association with 3D7 observed in the current study of PNG school children complements a longitudinal study conducted with children in Chonyi, Kilifi (J. Chan and K. Howell et al 2012, J Clin Invest, in press) whereby antibodies to 3D7 parental and 3D7-PfEMP1 were associated with protection but antibodies to 3D7vpkd were not. Therefore, these findings indicate that PfEMP1 represents a major target of naturally acquired antibodies that are associated with protective immunity. However, these studies do not exclude an important role for other VSAs as targets of protective antibodies and further studies are essential to understand their significance as antibody targets and their association with protection from malaria. The results presented in this thesis provide major new evidence that among the VSA families present on the surface of P. falciparum-IEs, PfEMP1 represents the dominant target of naturally acquired human antibodies and antibodies to PfEMP1 contribute to protective immunity against malaria. Novel approaches using PfEMP1-deficient transgenic parasites performed in this study offered a unique insight to determine the relative contribution of PfEMP1 and other VSAs to the overall antibody response to the IE surface. Therefore, the work presented in this thesis enhances the understanding of humoral immunity to malaria and will aid the development of vaccines against malaria.