Medical Biology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Merozoite surface protein 1: insights into complex formation and function in erythrocyte invasion
    Lin, Clara Shujuan ( 2016)
    The invasion of Plasmodium falciparum into host erythrocytes during the parasites’ asexual blood stage is a critical step in the perpetuation of symptomatic infection of malaria in the human host. Merozoites, the invasive form of the parasite, express a glycosylphosphatidylinositol-anchored 190 kDa Merozoite Surface Protein 1 (MSP1) on the surface. This abundant, essential protein exists in a large complex that includes other peripheral Merozoite Surface Proteins (MSPs). Together, these large macromolecular complexes are thought to mediate the initial stages of invasion. MSPs are of great interest to the field as they are exposed to the host immune system and also contribute directly to the invasion process. Therefore, there is a strong consideration for considering them as therapeutic targets. The majority of the work assessing these molecules as potential vaccine candidates has been performed with single MSP antigens and vaccine trials on these MSPs have shown variable results. A main concern arising from these trials is the fact that these antigens are often found in complex with other antigens and therefore have regions that are masked when found on the parasite surface. In order to address this, the work presented in this thesis utilises parasite-derived complexes to understand how peripheral MSPs: MSP3, MSP6, MSPDBL1, MSPDBL2 and MSP7 utilise MSP1 as a platform to be presented on the merozoite surface to form an array of complexes with different functional roles. In addition, multiple forms of erythrocyte binding complexes were found to have overlapping functions in invasion. Complexes that are involved in erythrocyte binding were characterised, where two components, MSPDBL1 and MSPDBL2 were shown to mediate erythrocyte binding directly. Overall, this study has identified and validated the presence of multiple Merozoite Surface Protein 1 complexes that are involved in mediating the interaction of the merozoite to receptors on the red blood cell surface, which is a vital process for successful invasion of parasites into host erythrocytes. Together, these findings have provided valuable insights into the complexity of MSP1 complexes and have contributed to the most complete model for the molecular arrangements that occur on the parasite surface to date.