Medicine (RMH) - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Antiepileptic drug teratogenicity: a human and laboratory translational study
    Jazayeri, Dana ( 2018)
    Antiepileptic drug (AED) associated teratogenicity has been well documented in the literature. The risk of physical birth defects during the first trimester of pregnancy is increased threefold for most AEDs and over ten-fold for the most teratogenic AED, valproate. Despite this risk, women require long term treatment to stop or reduce the occurrence of seizures and the consequent harm to both mother and foetus, including the possibility of sudden unexpected death in epilepsy. The mechanism resulting in this teratogenicity, and in particular why some women are more susceptible to have children with AED induced birth defects is incompletely elucidated. In recent years there has been emerging evidence that AEDs may be interacting with genomic factors to result in birth defects. These genomic factors may be susceptibility alleles in the mother or father, de novo mutations in the child or epigenetic factors such as alterations in DNA methylation in the mother or child. The studies reported in this thesis aim to a) develop an animal model of valproate induced defects that closely mimics a human clinical setting and can be used to better understand the pathogenesis of AED induced defects, and b) identify genomic markers of AED induced defects using whole genome analysis of human samples and determining if having epilepsy is a contributing factor to the onset of these defects. For aim a) the development of the animal model entailed using an epileptic strain of rats, Genetic Absence Epilepsy Rats from Strasbourg, determining a dose at which dietary valproate is therapeutic, mating the rats and conducting a morphological assessment of both internal and external defects. For aim b) human samples were collected and subjected to whole genome analysis, including whole exome sequencing and DNA methylation scans. Additionally, birth defect rates for non-epileptic women in the Australian Pregnancy Register were also separately quantified. The human samples for investigations were collected from participants and their families enrolled in the Register. Using both human and animal models this study aimed to generate new knowledge, which could ultimately lead to a pharmacogenomic approach to the selection of AEDs for women who wish to become pregnant. This would allow women to make more informed decisions, reduce the risk of having a baby with a birth defect and potentially assist in the formation of new AEDs with lower teratogenic risk.