Clinical School (Royal Melbourne Hospital) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Pooled genome wide association detects association upstream of FCRL3 with Graves' disease
    Khong, JJ ; Burdon, KP ; Lu, Y ; Laurie, K ; Leonardos, L ; Baird, PN ; Sahebjada, S ; Walsh, JP ; Gajdatsy, A ; Ebeling, PR ; Hamblin, PS ; Wong, R ; Forehan, SP ; Fourlanos, S ; Roberts, AP ; Doogue, M ; Selva, D ; Montgomery, GW ; Macgregor, S ; Craig, JE (BMC, 2016-11-18)
    BACKGROUND: Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. RESULTS: Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10-8). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10-4. Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. CONCLUSIONS: Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.
  • Item
    Thumbnail Image
    The role of impairment of mesenchymal stem cell function in osteoporotic bone fracture healing
    Zhang, L ; Miramini, S ; Richardson, M ; Mendis, P ; Ebeling, P (SPRINGER, 2017-09)
    With demographic change and increasing life expectancy, osteoporotic fractures have become one of the most prevalent trauma conditions seen in daily clinical practice. A variety of factors are known to affect the rate of healing in osteoporotic conditions (e.g. both biochemical and biomechanical environment of callus cells). However, the influence of impairment of mesenchymal stem cell function in the osteoporotic condition on bone fracture healing has not been fully understood. In the present study, we develop a mathematical model that quantifies the change in biological processes within the fracture callus as a result of osteoporosis. The model includes special features of osteoporosis such as reduction in mesenchymal stem cell (MSC) number in osteoporotic bone, impaired response of osteoporotic MSCs to their biomechanical microenvironment and the effects of configuration of locking compression plate (LCP) system on healing in this context. The results presented here suggest that mechanically-mediated MSCs differentiation at early stages of healing are significantly affected under osteoporotic conditions, while it is predicted that the flexible fixation achieved by increasing bone-plate distance of LCP could alleviate the negative effects of osteoporosis on healing. The outcomes of this study could potentially lead to patient specific surgical solutions, and thus achieve optimal healing outcomes in osteoporotic conditions.
  • Item
    Thumbnail Image
    The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation
    Miramini, S ; Zhang, L ; Richardson, M ; Mendis, P ; Oloyede, A ; Ebeling, P (Springer Netherlands, 2016)
    Interfragmentary movement (IFM) at the fracture site plays an important role in fracture healing, particularly during its early stage, via influencing the mechanical microenvironment of mesenchymal stem cells within the fracture callus. However, the effect of changes in IFM resulting from the changes in the configuration of locking plate fixation on cell differentiation has not yet been fully understood. In this study, mechanical experiments on surrogate tibia specimens, manufactured from specially formulated polyurethane, were conducted to investigate changes in IFM of fractures under various locking plate fixation configurations and loading magnitudes. The effect of the observed IFM on callus cell differentiation was then further studied using computational simulation. We found that during the early stage, cell differentiation in the fracture callus is highly influenced by fracture gap size and IFM, which in turn, is highly sensitive to locking plate fixation configuration. The computational model predicted that a small gap size (e.g. 1 mm) under a relatively flexible configuration of locking plate fixation (larger bone-plate distances and working lengths) could experience excessive strain and fluid flow within the fracture site, resulting in excessive fibrous tissue differentiation and delayed healing. By contrast, a relatively flexible configuration of locking plate fixation was predicted to improve cartilaginous callus formation and bone healing for a relatively larger gap size (e.g. 3 mm). If further confirmed by animal and human studies, the research outcome of this paper may have implications for orthopaedic surgeons in optimising the application of locking plate fixations for fractures in clinical practice.