Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    BCL-2 is dispensable for thrombopoiesis and platelet survival
    Debrincat, MA ; Pleines, I ; Lebois, M ; Lane, RM ; Holmes, ML ; Corbin, J ; Vandenberg, CJ ; Alexander, WS ; Ng, AP ; Strasser, A ; Bouillet, P ; Sola-Visner, M ; Kile, BT ; Josefsson, EC (NATURE PUBLISHING GROUP, 2015-04)
    Navitoclax (ABT-263), an inhibitor of the pro-survival BCL-2 family proteins BCL-2, BCL-XL and BCL-W, has shown clinical efficacy in certain BCL-2-dependent haematological cancers, but causes dose-limiting thrombocytopaenia. The latter effect is caused by Navitoclax directly inducing the apoptotic death of platelets, which are dependent on BCL-XL for survival. Recently, ABT-199, a selective BCL-2 antagonist, was developed. It has shown promising anti-leukaemia activity in patients whilst sparing platelets, suggesting that the megakaryocyte lineage does not require BCL-2. In order to elucidate the role of BCL-2 in megakaryocyte and platelet survival, we generated mice with a lineage-specific deletion of Bcl2, alone or in combination with loss of Mcl1 or Bclx. Platelet production and platelet survival were analysed. Additionally, we made use of BH3 mimetics that selectively inhibit BCL-2 or BCL-XL. We show that the deletion of BCL-2, on its own or in concert with MCL-1, does not affect platelet production or platelet lifespan. Thrombocytopaenia in Bclx-deficient mice was not affected by additional genetic loss or pharmacological inhibition of BCL-2. Thus, BCL-2 is dispensable for thrombopoiesis and platelet survival in mice.
  • Item
    Thumbnail Image
    Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans
    Choi, J ; Baldwin, TM ; Wong, M ; Bolden, JE ; Fairfax, KA ; Lucas, EC ; Cole, R ; Biben, C ; Morgan, C ; Ramsay, KA ; Ng, AP ; Kauppi, M ; Corcoran, LM ; Shi, W ; Wilson, N ; Wilson, MJ ; Alexander, WS ; Hilton, DJ ; de Graaf, CA (OXFORD UNIV PRESS, 2019-01-08)
    During haematopoiesis, haematopoietic stem cells differentiate into restricted potential progenitors before maturing into the many lineages required for oxygen transport, wound healing and immune response. We have updated Haemopedia, a database of gene-expression profiles from a broad spectrum of haematopoietic cells, to include RNA-seq gene-expression data from both mice and humans. The Haemopedia RNA-seq data set covers a wide range of lineages and progenitors, with 57 mouse blood cell types (flow sorted populations from healthy mice) and 12 human blood cell types. This data set has been made accessible for exploration and analysis, to researchers and clinicians with limited bioinformatics experience, on our online portal Haemosphere: https://www.haemosphere.org. Haemosphere also includes nine other publicly available high-quality data sets relevant to haematopoiesis. We have added the ability to compare gene expression across data sets and species by curating data sets with shared lineage designations or to view expression gene vs gene, with all plots available for download by the user.
  • Item
    Thumbnail Image
    Altered B-lymphopoiesis in mice with deregulated thrombopoietin signaling
    Au, AE ; Lebois, M ; Sim, SA ; Cannon, P ; Corbin, J ; Gangatirkar, P ; Hyland, CD ; Moujalled, D ; Rutgersson, A ; Yassinson, F ; Kile, BT ; Mason, KD ; Ng, AP ; Alexander, WS ; Josefsson, EC (NATURE PORTFOLIO, 2017-11-02)
    Thrombopoietin (TPO) is the master cytokine regulator of megakaryopoiesis. In addition to regulation of megakaryocyte and platelet number, TPO is important for maintaining proper hematopoietic stem cell (HSC) function. It was previously shown that a number of lymphoid genes were upregulated in HSCs from Tpo -/- mice. We investigated if absent or enhanced TPO signaling would influence normal B-lymphopoiesis. Absent TPO signaling in Mpl -/- mice led to enrichment of a common lymphoid progenitor (CLP) signature in multipotential lineage-negative Sca-1+c-Kit+ (LSK) cells and an increase in CLP formation. Moreover, Mpl -/- mice exhibited increased numbers of PreB2 and immature B-cells in bone marrow and spleen, with an increased proportion of B-lymphoid cells in the G1 phase of the cell cycle. Conversely, elevated TPO signaling in Tpo Tg mice was associated with reduced B-lymphopoiesis. Although at steady state, peripheral blood lymphocyte counts were normal in both models, Mpl -/- Eµ-myc mice showed an enhanced preneoplastic phase with increased numbers of splenic PreB2 and immature B-cells, a reduced quiescent fraction, and augmented blood lymphocyte counts. Thus, although Mpl is not expressed on lymphoid cells, TPO signaling may indirectly influence B-lymphopoiesis and the preneoplastic state in Myc-driven B-cell lymphomagenesis by lineage priming in multipotential progenitor cells.
  • Item
    Thumbnail Image
    Haemopedia: An Expression Atlas of Murine Hematopoietic Cells
    De Graaf, CA ; Choi, J ; Baldwin, TM ; Bolden, JE ; Fairfax, KA ; Robinson, AJ ; Biben, C ; Morgan, C ; Ramsay, K ; Ng, AP ; Kauppi, M ; Kruse, EA ; Sargeant, TJ ; Seidenman, N ; D'Amico, A ; D'Ombrain, MC ; Lucas, EC ; Koernig, S ; Morelli, AB ; Wilson, MJ ; Dower, SK ; Williams, B ; Heazlewood, SY ; Hu, Y ; Nilsson, SK ; Wu, L ; Smyth, GK ; Alexander, WS ; Hilton, DJ (CELL PRESS, 2016-09-13)
    Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.
  • Item
    Thumbnail Image
    Haematopoietic stem cells: past, present and future
    Ng, AP ; Alexander, WS (NATURE PUBLISHING GROUP, 2017)
    The discovery and characterisation of haematopoietic stem cells has required decades of research. The identification of adult bone marrow as a source of haematopoietic cells capable of protecting an organism from otherwise lethal irradiation led to the intense search for their identity and characteristics. Using functional assays along with evolving techniques for isolation of haematopoietic cells, haematopoietic stem cell populations were able to be enriched and their characteristics analysed. The key haematopoietic stem cell characteristics of pluripotentiality and the ability for self-renewal have emerged as characteristics of several haematopoietic stem cell populations, including those that have recently challenged the conventional concepts of the haematopoietic hierarchy. Human allogeneic stem cell therapy relies on these functional characteristics of haematopoietic stem cells that can be isolated from peripheral blood, bone marrow or cord blood, with the additional requirement that immunological barriers need to be overcome to allow sustained engraftment while minimising risk of graft-versus-host disease developing in the recipient of transplanted stem cells. Current and future research will continue to focus on the identification of haematopoietic stem cell regulators and methods for in vitro and in vivo stem cell manipulation, including genome editing, to expand the scope, potential and safety of therapy using haematopoietic stem cells.
  • Item
    Thumbnail Image
    Early Lineage Priming by Trisomy of Erg Leads to Myeloproliferation in a Down Syndrome Model
    Ng, AP ; Hu, Y ; Metcalf, D ; Hyland, CD ; Ierino, H ; Phipson, B ; Wu, D ; Baldwin, TM ; Kauppi, M ; Kiu, H ; Di Rago, L ; Hilton, DJ ; Smyth, GK ; Alexander, WS ; Grimes, HL (PUBLIC LIBRARY SCIENCE, 2015-05)
    Down syndrome (DS), with trisomy of chromosome 21 (HSA21), is the commonest human aneuploidy. Pre-leukemic myeloproliferative changes in DS foetal livers precede the acquisition of GATA1 mutations, transient myeloproliferative disorder (DS-TMD) and acute megakaryocytic leukemia (DS-AMKL). Trisomy of the Erg gene is required for myeloproliferation in the Ts(1716)65Dn DS mouse model. We demonstrate here that genetic changes specifically attributable to trisomy of Erg lead to lineage priming of primitive and early multipotential progenitor cells in Ts(1716)65Dn mice, excess megakaryocyte-erythroid progenitors, and malignant myeloproliferation. Gene expression changes dependent on trisomy of Erg in Ts(1716)65Dn multilineage progenitor cells were correlated with those associated with trisomy of HSA21 in human DS hematopoietic stem and primitive progenitor cells. These data suggest a role for ERG as a regulator of hematopoietic lineage potential, and that trisomy of ERG in the context of DS foetal liver hemopoiesis drives the pre-leukemic changes that predispose to subsequent DS-TMD and DS-AMKL.
  • Item
    Thumbnail Image
    Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation
    Ng, AP ; Kauppi, M ; Metcalf, D ; Hyland, CD ; Josefsson, EC ; Lebois, M ; Zhang, J-G ; Baldwin, TM ; Di Rago, L ; Hilton, DJ ; Alexander, WS (NATL ACAD SCIENCES, 2014-04-22)
    Thrombopoietin (TPO) acting via its receptor, the cellular homologue of the myeloproliferative leukemia virus oncogene (Mpl), is the major cytokine regulator of platelet number. To precisely define the role of specific hematopoietic cells in TPO-dependent hematopoiesis, we generated mice that express the Mpl receptor normally on stem/progenitor cells but lack expression on megakaryocytes and platelets (Mpl(PF4cre/PF4cre)). Mpl(PF4cre/PF4cre) mice displayed profound megakaryocytosis and thrombocytosis with a remarkable expansion of megakaryocyte-committed and multipotential progenitor cells, the latter displaying biological responses and a gene expression signature indicative of chronic TPO overstimulation as the underlying causative mechanism, despite a normal circulating TPO level. Thus, TPO signaling in megakaryocytes is dispensable for platelet production; its key role in control of platelet number is via generation and stimulation of the bipotential megakaryocyte precursors. Nevertheless, Mpl expression on megakaryocytes and platelets is essential to prevent megakaryocytosis and myeloproliferation by restricting the amount of TPO available to stimulate the production of megakaryocytes from the progenitor cell pool.
  • Item
    Thumbnail Image
    Characterization of thrombopoietin (TPO)-responsive progenitor cells in adult mouse bone marrow with in vivo megakaryocyte and erythroid potential
    Ng, AP ; Kauppi, M ; Metcalf, D ; Di Rago, L ; Hyland, CD ; Alexander, WS (NATL ACAD SCIENCES, 2012-02-14)
    Hematopoietic progenitor cells are the progeny of hematopoietic stem cells that coordinate the production of precise numbers of mature blood cells of diverse functional lineages. Identification of cell-surface antigen expression associated with hematopoietic lineage restriction has allowed prospective isolation of progenitor cells with defined hematopoietic potential. To clarify further the cellular origins of megakaryocyte commitment, we assessed the in vitro and in vivo megakaryocyte and platelet potential of defined progenitor populations in the adult mouse bone marrow. We show that megakaryocytes arise from CD150(+) bipotential progenitors that display both platelet- and erythrocyte-producing potential in vivo and that can develop from the Flt3(-) fraction of the pregranulocyte-macrophage population. We define a bipotential erythroid-megakaryocyte progenitor population, the CD150(+)CD9(lo)endoglin(lo) fraction of Lin(-)cKit(+)IL7 receptor alpha(-)FcγRII/III(lo)Sca1(-) cells, which contains the bulk of the megakaryocyte colony-forming capacity of the bone marrow, including bipotential megakaryocyte-erythroid colony-forming capacity, and can generate both erythrocytes and platelets efficiently in vivo. This fraction is distinct from the CD150(+)CD9(hi)endoglin(lo) fraction, which contains bipotential precursors with characteristics of increased megakaryocytic maturation, and the CD150(+)CD9(lo)endoglin(hi) fraction, which contains erythroid lineage-committed cells. Finally, we demonstrate that bipotential erythroid-megakaryocyte progenitor and CD150(+)CD9(hi)endoglin(lo) cells are TPO-responsive and that the latter population specifically expands in the recovery from thrombocytopenia induced by anti-platelet serum.
  • Item
    Thumbnail Image
    Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice
    Ng, Ashley P. ; Loughran, Stephen J. ; METCALF, DONALD ; Hyland, Craig D. ; deGraaf, Carolyn A. ; Hu, Yifang ; Smyth, Gordon K. ; Hilton, Douglas J. ; Kile, Benjamin T. ; ALEXANDER, WARREN (American Society of Hematology, 2011)
    Hematopoietic stem cells (HSCs) are rare residents of the bone marrow responsible for the lifelong production of blood cells. Regulation of the balance between HSC self renewal and differentiation is central to hematopoiesis, allowing precisely regulated generation of mature blood cells at steady-state and expanded production at times of rapid need, as well as maintaining ongoing stem cell capacity. Erg, a member of the Ets family of transcription factors, is deregulated in cancers and while Erg is known to be required for regulation of adult HSCs, its precise role has not been defined. We show here that although heterozygosity for functional Erg is sufficient for adequate steady state HSC maintenance, Erg+/Mld2 mutant mice exhibit impaired HSC self-renewal following bone marrow transplantation or during recovery from myelotoxic stress. Moreover, while mice functionally compromised for either Erg or Mpl, the receptor for TPO, a key regulator of HSC quiescence, maintained sufficient HSC activity to sustain hematopoiesis, Mpl-/- Erg+/Mld2 compound mutant mice displayed exacerbated stem cell deficiencies and bone marrow failure. Thus, Erg is a critical regulator of adult HSCs, essential for maintaining self renewal at times of high HSC cycling.