Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14
    Rafehi, H ; Read, J ; Szmulewicz, DJ ; Davies, KC ; Snell, P ; Fearnley, LG ; Scott, L ; Thomsen, M ; Gillies, G ; Pope, K ; Bennett, MF ; Munro, JE ; Ngo, KJ ; Chen, L ; Wallis, MJ ; Butler, EG ; Kumar, KR ; Wu, KHC ; Tomlinson, SE ; Tisch, S ; Malhotra, A ; Lee-Archer, M ; Dolzhenko, E ; Eberle, MA ; Roberts, LJ ; Fogel, BL ; Bruggemann, N ; Lohmann, K ; Delatycki, MB ; Bahlo, M ; Lockhart, PJ (CELL PRESS, 2023-01-05)
    Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.
  • Item
    Thumbnail Image
    Unexpected diagnosis of myotonic dystrophy type 2 repeat expansion by genome sequencing
    Rafehi, H ; Green, C ; Bozaoglu, K ; Gillies, G ; Delatycki, MB ; Lockhart, PJ ; Scheffer, IE ; Bahlo, M (SPRINGERNATURE, 2023-01)
    Several neurological disorders, such as myotonic dystrophy are caused by expansions of short tandem repeats (STRs) which can be difficult to detect by molecular tools. Methodological advances have made repeat expansion (RE) detection with whole genome sequencing (WGS) feasible. We recruited a multi-generational family (family A) ascertained for genetic studies of autism spectrum disorder. WGS was performed on seven children from four nuclear families from family A and analyzed for REs of STRs known to cause neurological disorders. We detected an expansion of a heterozygous intronic CCTG STR in CNBP in two siblings. This STR causes myotonic dystrophy type 2 (DM2). The expansion did not segregate with the ASD phenotype. Repeat-primed PCR showed that the DM2 CCTG motif was expanded above the pathogenic threshold in both children and their mother. On subsequent examination, the mother had mild features of DM2. We show that screening of STRs in WGS datasets has diagnostic utility, both in the clinical and research domain, with potential management and genetic counseling implications.
  • Item
    Thumbnail Image
    Rapid Diagnosis of Spinocerebellar Ataxia 36 in a three-Generation Family Using Short-Read Whole-Genome Sequencing Data
    Rafehi, H ; Szmulewicz, DJ ; Pope, K ; Wallis, M ; Christodoulou, J ; White, SM ; Delatycki, MB ; Lockhart, PJ ; Bahlo, M (WILEY, 2020-09)
  • Item
    Thumbnail Image
    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS
    Rafehi, H ; Szmulewicz, DJ ; Bennett, MF ; Sobreira, NLM ; Pope, K ; Smith, KR ; Gillies, G ; Diakumis, P ; Dolzhenko, E ; Eberle, MA ; Garcia Barcina, M ; Breen, DP ; Chancellor, AM ; Cremer, PD ; Delatycki, MB ; Fogel, BL ; Hackett, A ; Halmagyi, GM ; Kapetanovic, S ; Lang, A ; Mossman, S ; Mu, W ; Patrikios, P ; Perlman, SL ; Rosemergy, I ; Storey, E ; Watson, SRD ; Wilson, MA ; Zee, DS ; Valle, D ; Amor, DJ ; Bahlo, M ; Lockhart, PJ (CELL PRESS, 2019-07-03)
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.
  • Item
    Thumbnail Image
    A family study implicates GBE1 in the etiology of autism spectrum disorder
    Fanjul-Fernandez, M ; Brown, NJ ; Hickey, P ; Diakumis, P ; Rafehi, H ; Bozaoglu, K ; Green, CC ; Rattray, A ; Young, S ; Alhuzaimi, D ; Mountford, HS ; Gillies, G ; Lukic, V ; Vick, T ; Finlay, K ; Coe, BP ; Eichler, EE ; Delatycki, MB ; Wilson, SJ ; Bahlo, M ; Scheffer, IE ; Lockhart, PJ (WILEY, 2022-01)
    Autism spectrum disorders (ASD) are neurodevelopmental disorders with an estimated heritability of >60%. Family-based genetic studies of ASD have generally focused on multiple small kindreds, searching for de novo variants of major effect. We hypothesized that molecular genetic analysis of large multiplex families would enable the identification of variants of milder effects. We studied a large multigenerational family of European ancestry with multiple family members affected with ASD or the broader autism phenotype (BAP). We identified a rare heterozygous variant in the gene encoding 1,4-ɑ-glucan branching enzyme 1 (GBE1) that was present in seven of seven individuals with ASD, nine of ten individuals with the BAP, and none of four tested unaffected individuals. We genotyped a community-acquired cohort of 389 individuals with ASD and identified three additional probands. Cascade analysis demonstrated that the variant was present in 11 of 13 individuals with familial ASD/BAP and neither of the two tested unaffected individuals in these three families, also of European ancestry. The variant was not enriched in the combined UK10K ASD cohorts of European ancestry but heterozygous GBE1 deletion was overrepresented in large ASD cohorts, collectively suggesting an association between GBE1 and ASD.