Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Mosaic uniparental disomy results in GM1 gangliosidosis with normal enzyme assay
    Myers, KA ; Bennett, MF ; Chow, CW ; Carden, SM ; Mandelstam, SA ; Bahlo, M ; Scheffer, IE (WILEY, 2018-01)
    Inherited metabolic disorders are traditionally diagnosed using broad and expensive panels of screening tests, often including invasive skin and muscle biopsy. Proponents of next-generation genetic sequencing have argued that replacing these screening panels with whole exome sequencing (WES) would save money. Here, we present a complex patient in whom WES allowed diagnosis of GM1 gangliosidosis, caused by homozygous GLB1 mutations, resulting in β-galactosidase deficiency. A 10-year-old girl had progressive neurologic deterioration, macular cherry-red spot, and cornea verticillata. She had marked clinical improvement with initiation of the ketogenic diet. Comparative genomic hybridization microarray showed mosaic chromosome 3 paternal uniparental disomy (UPD). GM1 gangliosidosis was suspected, however β-galactosidase assay was normal. Trio WES identified a paternally-inherited pathogenic splice-site GLB1 mutation (c.75+2dupT). The girl had GM1 gangliosidosis; however, enzymatic testing in blood was normal, presumably compensated for by non-UPD cells. Severe neurologic dysfunction occurred due to disruptive effects of UPD brain cells.
  • Item
    Thumbnail Image
    Inherited RORB pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy
    Sadleir, LG ; de Valles-Ibanez, G ; King, C ; Coleman, M ; Mossman, S ; Paterson, S ; Nguyen, J ; Berkovic, SF ; Mullen, S ; Bahlo, M ; Hildebrand, MS ; Mefford, HC ; Scheffer, IE (WILEY, 2020-04)
    Variants in RORB have been reported in eight individuals with epilepsy, with phenotypes ranging from eyelid myoclonia with absence epilepsy to developmental and epileptic encephalopathies. We identified novel RORB variants in 11 affected individuals from four families. One was from whole genome sequencing and three were from RORB screening of three epilepsy cohorts: developmental and epileptic encephalopathies (n = 1021), overlap of generalized and occipital epilepsy (n = 84), and photosensitivity (n = 123). Following interviews and review of medical records, individuals' seizure and epilepsy syndromes were classified. Three novel missense variants and one exon 3 deletion were predicted to be pathogenic by in silico tools, not found in population databases, and located in key evolutionary conserved domains. Median age at seizure onset was 3.5 years (0.5-10 years). Generalized, predominantly absence and myoclonic, and occipital seizures were seen in all families, often within the same individual (6/11). All individuals with epilepsy were photosensitive, and seven of 11 had cognitive abnormalities. Electroencephalograms showed generalized spike and wave and/or polyspike and wave. Here we show a striking RORB phenotype of overlap of photosensitive generalized and occipital epilepsy in both individuals and families. This is the first report of a gene associated with this overlap of epilepsy syndromes.
  • Item
    No Preview Available
    Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia
    Khan, K ; Zech, M ; Morgan, AT ; Amor, DJ ; Skorvanek, M ; Khan, TN ; Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Coleman, M ; Rigbye, KA ; Scheffer, IE ; Bahlo, M ; Wagner, M ; Lam, DD ; Berutti, R ; Havrankova, P ; Fecikova, A ; Strom, TM ; Han, V ; Dosekova, P ; Gdovinova, Z ; Laccone, F ; Jameel, M ; Mooney, MR ; Baig, SM ; Jech, R ; Davis, EE ; Katsanis, N ; Winkelmann, J (NATURE PUBLISHING GROUP, 2019-11)
    PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
  • Item
    Thumbnail Image
    In silico prioritization based on coexpression can aid epileptic encephalopathy gene discovery
    Oliver, KL ; Lukic, V ; Freytag, S ; Scheffer, IE ; Berkovic, SF ; Bahlo, M (LIPPINCOTT WILLIAMS & WILKINS, 2016-02)
    OBJECTIVE: To evaluate the performance of an in silico prioritization approach that was applied to 179 epileptic encephalopathy candidate genes in 2013 and to expand the application of this approach to the whole genome based on expression data from the Allen Human Brain Atlas. METHODS: PubMed searches determined which of the 179 epileptic encephalopathy candidate genes had been validated. For validated genes, it was noted whether they were 1 of the 19 of 179 candidates prioritized in 2013. The in silico prioritization approach was applied genome-wide; all genes were ranked according to their coexpression strength with a reference set (i.e., 51 established epileptic encephalopathy genes) in both adult and developing human brain expression data sets. Candidate genes ranked in the top 10% for both data sets were cross-referenced with genes previously implicated in the epileptic encephalopathies due to a de novo variant. RESULTS: Five of 6 validated epileptic encephalopathy candidate genes were among the 19 prioritized in 2013 (odds ratio = 54, 95% confidence interval [7,∞], p = 4.5 × 10(-5), Fisher exact test); one gene was false negative. A total of 297 genes ranked in the top 10% for both the adult and developing brain data sets based on coexpression with the reference set. Of these, 9 had been previously implicated in the epileptic encephalopathies (FBXO41, PLXNA1, ACOT4, PAK6, GABBR2, YWHAG, NBEA, KNDC1, and SELRC1). CONCLUSIONS: We conclude that brain gene coexpression data can be used to assist epileptic encephalopathy gene discovery and propose 9 genes as strong epileptic encephalopathy candidates worthy of further investigation.
  • Item
    Thumbnail Image
    PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy
    Hildebrand, MS ; Tankard, R ; Gazina, EV ; Damiano, JA ; Lawrence, KM ; Dahl, H-HM ; Regan, BM ; Shearer, AE ; Smith, RJH ; Marini, C ; Guerrini, R ; Labate, A ; Gambardella, A ; Tinuper, P ; Lichetta, L ; Baldassari, S ; Bisulli, F ; Pippucci, T ; Scheffer, IE ; Reid, CA ; Petrou, S ; Bahlo, M ; Berkovic, SF (WILEY, 2015-08)
    OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. METHODS: Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. RESULTS: Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. INTERPRETATION: PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.
  • Item
    Thumbnail Image
    A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development
    Eising, E ; Carrion-Castillo, A ; Vino, A ; Strand, EA ; Jakielski, KJ ; Scerri, TS ; Hildebrand, MS ; Webster, R ; Ma, A ; Mazoyer, B ; Francks, C ; Bahlo, M ; Scheffer, IE ; Morgan, AT ; Shriberg, LD ; Fisher, SE (NATURE PUBLISHING GROUP, 2019-07)
    Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.
  • Item
    No Preview Available
    Severe childhood speech disorder: Gene discovery highlights transcriptional dysregulation
    Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Van Reyk, O ; Coleman, M ; Braden, RO ; Turner, S ; Rigbye, KA ; Boys, A ; Barton, S ; Webster, R ; Fahey, M ; Saunders, K ; Parry-Fielder, B ; Paxton, G ; Hayman, M ; Coman, D ; Goel, H ; Baxter, A ; Ma, A ; Davis, N ; Reilly, S ; Delatycki, M ; Liegeois, FJ ; Connelly, A ; Gecz, J ; Fisher, SE ; Amor, DJ ; Scheffer, IE ; Bahlo, M ; Morgan, AT (LIPPINCOTT WILLIAMS & WILKINS, 2020-05-19)
    OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.
  • Item
    Thumbnail Image
    Reanalysis and optimisation of bioinformatic pipelines is critical for mutation detection
    Cowley, MJ ; Liu, Y-C ; Oliver, KL ; Carvill, G ; Myers, CT ; Gayevskiy, V ; Delatycki, M ; Vlaskamp, DRM ; Zhu, Y ; Mefford, H ; Buckley, MF ; Bahlo, M ; Scheffer, IE ; Dinger, ME ; Roscioli, T (WILEY-HINDAWI, 2019-04)
    Rapid advances in genomic technologies have facilitated the identification pathogenic variants causing human disease. We report siblings with developmental and epileptic encephalopathy due to a novel, shared heterozygous pathogenic 13 bp duplication in SYNGAP1 (c.435_447dup, p.(L150Vfs*6)) that was identified by whole genome sequencing (WGS). The pathogenic variant had escaped earlier detection via two methodologies: whole exome sequencing and high-depth targeted sequencing. Both technologies had produced reads carrying the variant, however, they were either not aligned due to the size of the insertion or aligned to multiple major histocompatibility complex (MHC) regions in the hg19 reference genome, making the critical reads unavailable for variant calling. The WGS pipeline followed different protocols, including alignment of reads to the GRCh37 reference genome, which lacks the additional MHC contigs. Our findings highlight the benefit of using orthogonal clinical bioinformatic pipelines and all relevant inheritance patterns to re-analyze genomic data in undiagnosed patients.
  • Item
    Thumbnail Image
    Tracing Autism Traits in Large Multiplex Families to Identify Endophenotypes of the Broader Autism Phenotype
    Trevis, KJ ; Brown, NJ ; Green, CC ; Lockhart, PJ ; Desai, T ; Vick, T ; Anderson, V ; Pua, EPK ; Bahlo, M ; Delatycki, MB ; Scheffer, IE ; Wilson, SJ (MDPI, 2020-11)
    Families comprising many individuals with Autism Spectrum Disorders (ASD) may carry a dominant predisposing mutation. We implemented rigorous phenotyping of the "Broader Autism Phenotype" (BAP) in large multiplex ASD families using a novel endophenotype approach for the identification and characterisation of distinct BAP endophenotypes. We evaluated ASD/BAP features using standardised tests and a semi-structured interview to assess social, intellectual, executive and adaptive functioning in 110 individuals, including two large multiplex families (Family A: 30; Family B: 35) and an independent sample of small families (n = 45). Our protocol identified four distinct psychological endophenotypes of the BAP that were evident across these independent samples, and showed high sensitivity (97%) and specificity (82%) for individuals classified with the BAP. Patterns of inheritance of identified endophenotypes varied between the two large multiplex families, supporting their utility for identifying genes in ASD.
  • Item
    Thumbnail Image
    Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania
    Ware, TL ; Huskins, SR ; Grinton, BE ; Liu, Y-C ; Bennett, MF ; Harvey, M ; McMahon, J ; Andreopoulos-Malikotsinas, D ; Bahlo, M ; Howell, KB ; Hildebrand, MS ; Damiano, JA ; Rosenfeld, A ; Mackay, MT ; Mandelstam, S ; Leventer, RJ ; Harvey, AS ; Freeman, JL ; Scheffer, IE ; Jones, DL ; Berkovic, SF (WILEY, 2019-09)
    We sought to determine incidence, etiologies, and yield of genetic testing in infantile onset developmental and epileptic encephalopathies (DEEs) in a population isolate, with an intensive multistage approach. Infants born in Tasmania between 2011 and 2016, with seizure onset <2 years of age, epileptiform EEG, frequent seizures, and developmental impairment, were included. Following review of EEG databases, medical records, brain MRIs, and other investigations, clinical genetic testing was undertaken with subsequent research interrogation of whole exome sequencing (WES) in unsolved cases. The incidence of infantile DEEs was 0.44/1000 per year (95% confidence interval 0.25 to 0.71), with 16 cases ascertained. The etiology was structural in 5/16 cases. A genetic basis was identified in 6 of the remaining 11 cases (3 gene panel, 3 WES). In two further cases, WES identified novel variants with strong in silico data; however, paternal DNA was not available to support pathogenicity. The etiology was not determined in 3/16 (19%) cases, with a candidate gene identified in one of these. Pursuing clinical imaging and genetic testing followed by WES at an intensive research level can give a high diagnostic yield in the infantile DEEs, providing a solid base for prognostic and genetic counseling.