Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 30
  • Item
    Thumbnail Image
    Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples.
    Cowell, AN ; Loy, DE ; Sundararaman, SA ; Valdivia, H ; Fisch, K ; Lescano, AG ; Baldeviano, GC ; Durand, S ; Gerbasi, V ; Sutherland, CJ ; Nolder, D ; Vinetz, JM ; Hahn, BH ; Winzeler, EA ; Miller, LH (American Society for Microbiology, 2017-02-07)
    UNLABELLED: Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. IMPORTANCE: Malaria is a disease caused by Plasmodium parasites that caused 214 million symptomatic cases and 438,000 deaths in 2015. Plasmodium vivax is the most widely distributed species, causing the majority of malaria infections outside sub-Saharan Africa. Whole-genome sequencing (WGS) of Plasmodium parasites from clinical samples has revealed important insights into the epidemiology and mechanisms of drug resistance of malaria. However, WGS of P. vivax is challenging due to low parasite levels in humans and the lack of a routine system to culture the parasites. Selective whole-genome amplification (SWGA) preferentially amplifies the genomes of pathogens from mixtures of target and host gDNA. Here, we demonstrate that SWGA is a simple, robust method that can be used to enrich P. vivax genomic DNA (gDNA) from unprocessed human blood samples and dried blood spots for cost-effective, high-quality WGS.
  • Item
    Thumbnail Image
    Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands
    Quah, YW ; Waltmann, A ; Karl, S ; White, MT ; Vahi, V ; Darcy, A ; Pitakaka, F ; Whittaker, M ; Tisch, DJ ; Barry, A ; Barnadas, C ; Kazura, J ; Mueller, I (BMC, 2019-03-28)
    BACKGROUND: Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. METHODS: An observational cohort study was conducted among 860 children aged 0.5-12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. RESULTS: Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2-47.4%, p < 0.01; molFOB: 0.05-4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. CONCLUSION: Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities.
  • Item
    Thumbnail Image
    Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp pertenue: Application to yaws in Lihir Island, Papua New Guinea
    Godornes, C ; Giacani, L ; Barry, AE ; Mitja, O ; Lukehart, SA ; Norris, SJ (PUBLIC LIBRARY SCIENCE, 2017-12)
    BACKGROUND: Yaws is a neglected tropical disease, caused by Treponema pallidum subsp. pertenue. The disease causes chronic lesions, primarily in young children living in remote villages in tropical climates. As part of a global yaws eradication campaign initiated by the World Health Organization, we sought to develop and evaluate a molecular typing method to distinguish different strains of T. pallidum subsp. pertenue for disease control and epidemiological purposes. METHODS AND PRINCIPAL FINDINGS: Published genome sequences of strains of T. pallidum subsp. pertenue and pallidum were compared to identify polymorphic genetic loci among the strains. DNA from a number of existing historical Treponema isolates, as well as a subset of samples from yaws patients collected in Lihir Island, Papua New Guinea, were analyzed using these targets. From these data, three genes (tp0548, tp0136 and tp0326) were ultimately selected to give a high discriminating capability among the T. pallidum subsp. pertenue samples tested. Intragenic regions of these three target genes were then selected to enhance the discriminating capability of the typing scheme using short readily amplifiable loci. This 3-gene multilocus sequence typing (MLST) method was applied to existing historical human yaws strains, the Fribourg-Blanc simian isolate, and DNA from 194 lesion swabs from yaws patients on Lihir Island, Papua New Guinea. Among all samples tested, fourteen molecular types were identified, seven of which were found in patient samples and seven among historical isolates or DNA. Three types (JG8, TD6, and SE7) were predominant on Lihir Island. CONCLUSIONS: This MLST approach allows molecular typing and differentiation of yaws strains. This method could be a useful tool to complement epidemiological studies in regions where T. pallidum subsp. pertenue is prevalent with the overall goals of improving our understanding of yaws transmission dynamics and helping the yaws eradication campaign to succeed.
  • Item
    Thumbnail Image
    Sustained Malaria Control Over an 8-Year Period in Papua New Guinea: The Challenge of Low-Density Asymptomatic Plasmodium Infections
    Koepfli, C ; Ome-Kaius, M ; Jally, S ; Malau, E ; Maripal, S ; Ginny, J ; Timinao, L ; Kattenberg, JH ; Obadia, T ; White, M ; Rarau, P ; Senn, N ; Barry, AE ; Kazura, JW ; Mueller, I ; Robinson, LJ (OXFORD UNIV PRESS INC, 2017-12-01)
    BACKGROUND: The scale-up of effective malaria control in the last decade has resulted in a substantial decline in the incidence of clinical malaria in many countries. The effects on the proportions of asymptomatic and submicroscopic infections and on transmission potential are yet poorly understood. METHODS: In Papua New Guinea, vector control has been intensified since 2008, and improved diagnosis and treatment was introduced in 2012. Cross-sectional surveys were conducted in Madang Province in 2006 (with 1280 survey participants), 2010 (with 2117 participants), and 2014 (with 2516 participants). Infections were quantified by highly sensitive quantitative polymerase chain reaction (PCR) analysis, and gametocytes were quantified by reverse-transcription qPCR analysis. RESULTS: Plasmodium falciparum prevalence determined by qPCR decreased from 42% in 2006 to 9% in 2014. The P. vivax prevalence decreased from 42% in 2006 to 13% in 2010 but then increased to 20% in 2014. Parasite densities decreased 5-fold from 2006 to 2010; 72% of P. falciparum and 87% of P. vivax infections were submicroscopic in 2014. Gametocyte density and positivity correlated closely with parasitemia, and population gametocyte prevalence decreased 3-fold for P. falciparum and 29% for P. vivax from 2010 to 2014. CONCLUSIONS: Sustained control has resulted in reduced malaria transmission potential, but an increasing proportion of gametocyte carriers are asymptomatic and submicroscopic and represent a challenge to malaria control.
  • Item
    No Preview Available
    Genomic analysis of local variation and recent evolution in Plasmodium vivax
    Pearson, RD ; Amato, R ; Auburn, S ; Miotto, O ; Almagro-Garcia, J ; Amaratunga, C ; Suon, S ; Mao, S ; Noviyanti, R ; Trimarsanto, H ; Marfurt, J ; Anstey, NM ; William, T ; Boni, MF ; Dolecek, C ; Hien, TT ; White, NJ ; Michon, P ; Siba, P ; Tavul, L ; Harrison, G ; Barry, A ; Mueller, I ; Ferreira, MU ; Karunaweera, N ; Randrianarivelojosia, M ; Gao, Q ; Hubbart, C ; Hart, L ; Jeffery, B ; Drury, E ; Mead, D ; Kekre, M ; Campino, S ; Manske, M ; Cornelius, VJ ; MacInnis, B ; Rockett, KA ; Miles, A ; Rayner, JC ; Fairhurst, RM ; Nosten, F ; Price, RN ; Kwiatkowski, DP (NATURE PUBLISHING GROUP, 2016-08)
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
  • Item
    No Preview Available
    Genomic epidemiology of artemisinin resistant malaria
    Amato, R ; Miotto, O ; Woodrow, CJ ; Almagro-Garcia, J ; Sinha, I ; Campino, S ; Mead, D ; Drury, E ; Kekre, M ; Sanders, M ; Amambua-Ngwa, A ; Amaratunga, C ; Amenga-Etego, L ; Andrianaranjaka, V ; Apinjoh, T ; Ashley, E ; Auburn, S ; Awandare, GA ; Baraka, V ; Barry, A ; Boni, MF ; Borrmann, S ; Bousema, T ; Branch, O ; Bull, PC ; Chotivanich, K ; Conway, DJ ; Craig, A ; Day, NP ; Djimde, A ; Dolecek, C ; Dondorp, AM ; Drakeley, C ; Duffy, P ; Echeverry, DF ; Egwang, TG ; Fairhurst, RM ; Faiz, MA ; Fanello, CI ; Tran, TH ; Hodgson, A ; Imwong, M ; Ishengoma, D ; Lim, P ; Lon, C ; Marfurt, J ; Marsh, K ; Mayxay, M ; Michon, P ; Mobegi, V ; Mokuolu, OA ; Montgomery, J ; Mueller, I ; Kyaw, MP ; Newton, PN ; Nosten, F ; Noviyanti, R ; Nzila, A ; Ocholla, H ; Oduro, A ; Onyamboko, M ; Ouedraogo, J-B ; Phyo, APP ; Plowe, C ; Price, RN ; Pukrittayakamee, S ; Randrianarivelojosia, M ; Ringwald, P ; Ruiz, L ; Saunders, D ; Shayo, A ; Siba, P ; Takala-Harrison, S ; Thanh, T-NN ; Thathy, V ; Verra, F ; Wendler, J ; White, NJ ; Ye, H ; Cornelius, VJ ; Giacomantonio, R ; Muddyman, D ; Henrichs, C ; Malangone, C ; Jyothi, D ; Pearson, RD ; Rayner, JC ; McVean, G ; Rockett, KA ; Miles, A ; Vauterin, P ; Jeffery, B ; Manske, M ; Stalker, J ; Maclnnis, B ; Kwiatkowski, DP (eLIFE SCIENCES PUBL LTD, 2016-03-04)
    The current epidemic of artemisinin resistant Plasmodium falciparum in Southeast Asia is the result of a soft selective sweep involving at least 20 independent kelch13 mutations. In a large global survey, we find that kelch13 mutations which cause resistance in Southeast Asia are present at low frequency in Africa. We show that African kelch13 mutations have originated locally, and that kelch13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non-synonymous mutations, many of which cause radical amino-acid changes. Thus, kelch13 is not currently undergoing strong selection in Africa, despite a deep reservoir of variations that could potentially allow resistance to emerge rapidly. The practical implications are that public health surveillance for artemisinin resistance should not rely on kelch13 data alone, and interventions to prevent resistance must account for local evolutionary conditions, shown by genomic epidemiology to differ greatly between geographical regions.
  • Item
    Thumbnail Image
    Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)
    Arnott, A ; Mueller, I ; Ramsland, PA ; Siba, PM ; Reeder, JC ; Barry, AE ; del Portillo, HA (PUBLIC LIBRARY SCIENCE, 2013-10)
    BACKGROUND: The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. METHODOLOGY AND PRINCIPAL FINDINGS: New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. CONCLUSIONS: It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.
  • Item
    Thumbnail Image
    A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa
    Chen, DS ; Barry, AE ; Leliwa-Sytek, A ; Smith, T-A ; Peterson, I ; Brown, SM ; Migot-Nabias, F ; Deloron, P ; Kortok, MM ; Marsh, K ; Daily, JP ; Ndiaye, D ; Sarr, O ; Mboup, S ; Day, KP ; Gruner, AC (PUBLIC LIBRARY SCIENCE, 2011-02-09)
    BACKGROUND: The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1%) var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences. CONCLUSIONS/SIGNIFICANCE: Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population exists.
  • Item
    Thumbnail Image
    Hepatitis C Virus Phylogenetic Clustering Is Associated with the Social-Injecting Network in a Cohort of People Who Inject Drugs
    Sacks-Davis, R ; Daraganova, G ; Aitken, C ; Higgs, P ; Tracy, L ; Bowden, S ; Jenkinson, R ; Rolls, D ; Pattison, P ; Robins, G ; Grebely, J ; Barry, A ; Hellard, M ; Blackard, J (PUBLIC LIBRARY SCIENCE, 2012-10-26)
    It is hypothesized that social networks facilitate transmission of the hepatitis C virus (HCV). We tested for association between HCV phylogeny and reported injecting relationships using longitudinal data from a social network design study. People who inject drugs were recruited from street drug markets in Melbourne, Australia. Interviews and blood tests took place three monthly (during 2005-2008), with participants asked to nominate up to five injecting partners at each interview. The HCV core region of individual isolates was then sequenced and phylogenetic trees were constructed. Genetic clusters were identified using bootstrapping (cut-off: 70%). An adjusted Jaccard similarity coefficient was used to measure the association between the reported injecting relationships and relationships defined by clustering in the phylogenetic analysis (statistical significance assessed using the quadratic assignment procedure). 402 participants consented to participate; 244 HCV infections were observed in 238 individuals. 26 genetic clusters were identified, with 2-7 infections per cluster. Newly acquired infection (AOR = 2.03, 95% CI: 1.04-3.96, p = 0.037, and HCV genotype 3 (vs. genotype 1, AOR = 2.72, 95% CI: 1.48-4.99) were independent predictors of being in a cluster. 54% of participants whose infections were part of a cluster in the phylogenetic analysis reported injecting with at least one other participant in that cluster during the study. Overall, 16% of participants who were infected at study entry and 40% of participants with newly acquired infections had molecular evidence of related infections with at least one injecting partner. Likely transmission clusters identified in phylogenetic analysis correlated with reported injecting relationships (adjusted Jaccard coefficient: 0.300; p<0.001). This is the first study to show that HCV phylogeny is associated with the injecting network, highlighting the importance of the injecting network in HCV transmission.
  • Item
    Thumbnail Image
    The Stability and Complexity of Antibody Responses to the Major Surface Antigen of Plasmodium falciparum Are Associated with Age in a Malaria Endemic Area
    Barry, AE ; Trieu, A ; Fowkes, FJI ; Pablo, J ; Kalantari-Dehaghi, M ; Jasinskas, A ; Tan, X ; Kayala, MA ; Tavul, L ; Siba, PM ; Day, KP ; Baldi, P ; Felgner, PL ; Doolan, DL (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-11)
    Individuals that are exposed to malaria eventually develop immunity to the disease with one possible mechanism being the gradual acquisition of antibodies to the range of parasite variant surface antigens in their local area. Major antibody targets include the large and highly polymorphic Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of proteins. Here, we use a protein microarray containing 123 recombinant PfEMP1-DBLα domains (VAR) from Papua New Guinea to seroprofile 38 nonimmune children (<4 years) and 29 hyperimmune adults (≥15 years) from the same local area. The overall magnitude, prevalence and breadth of antibody response to VAR was limited at <2 years and 2-2.9 years, peaked at 3-4 years and decreased for adults compared with the oldest children. An increasing proportion of individuals recognized large numbers of VAR proteins (>20) with age, consistent with the breadth of response stabilizing with age. In addition, the antibody response was limited in uninfected children compared with infected children but was similar in adults irrespective of infection status. Analysis of the variant-specific response confirmed that the antibody signature expands with age and infection. This also revealed that the antibody signatures of the youngest children overlapped substantially, suggesting that they are exposed to the same subset of PfEMP1 variants. VAR proteins were either seroprevalent from early in life, (<3 years), from later in childhood (≥3 years) or rarely recognized. Group 2 VAR proteins (Cys2/MFK-REY+) were serodominant in infants (<1-year-old) and all other sequence subgroups became more seroprevalent with age. The results confirm that the anti-PfEMP1-DBLα antibody responses increase in magnitude and prevalence with age and further demonstrate that they increase in stability and complexity. The protein microarray approach provides a unique platform to rapidly profile variant-specific antibodies to malaria and suggests novel insights into the acquisition of immunity to malaria.